Penerapan Algoritma Simple Additive Weighting untuk Penentuan Karyawan Terbaik

Siswanto¹, Suprihono²

¹²Teknik Informatika, Fakultas Teknologi Informasi, Universitas Budi Luhur, Jakarta, Indonesia ¹siswanto@budiluhur.ac.id, ²ksuprihono@gmail.com

Abstract

PT Elnusa Petrofin (EPN) provides the best contribution to employees, this award is given in the hope of motivating all employees to work well. PT Elnusa Petrofin (EPN) conducted the process of selecting the best employees, so this will of course require a long time and produce less than the maximum. Sometimes mistakes are made by the leader in relation to the best employees, see the conflict that occurs at PT Elnusa Petrofin (EPN) then an algorithm is requested to help the best employee leaders use the Simple Additive Addition Algorithm (SAW) as a method used to find alternative Simple Algorithms This Additive Weighting (SAW) can determine the best association seen from the ranking system at PT Elnusa Petrofin and the results of the ranking process with Simple Additive Weighting obtain an average result of Simple Additive Weighting (SAW) of 4.8 with a standard deviation of 3.982 and a classification process with Naïve Bayes produces an accuracy of 73.33% and an error of 26.67%, with an error value on the results of the allocations needed to predict the best employee performance.

Keywords: SAW Algorithm, Best Employees, Naïve Bayes

Abstrak

PT Elnusa Petrofin (EPN) setiap tahunnya memberikan penghargaan kepada karyawan terbaik, penghargaan tersebut diberikan dengan harapan dapat memotivasi seluruh karyawan agar dapat bekerja dengan baik. Adapun proses penentuan karyawan terbaik pada PT Elnusa Petrofin (EPN) dilakukan dengan cara mengamati cara kerja karyawan, sehingga hal ini tentu saja akan sangat membutuhkan waktu yang lama dan hasilnya kurang maksimal. Terkadang sering terjadi kesalahan yang dibuat oleh pimpinan dalam menentukan karyawan terbaik, melihat permasalahan yang terjadi pada PT Elnusa Petrofin (EPN) maka diajukan sebuah Algoritma untuk membantu pimpinan menentukan karyawan terbaik menggunakan Algoritma Simple Additive Weighting (SAW) yaitu suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu, diharapkan dengan menggunakan Algoritma Simple Additive Weighting (SAW) tersebut dapat menentukan karyawan yang terbaik dilihat dari sistem perangkingan pada PT Elnusa Petrofin dan hasil proses perangkingan dengan Simple Additive Weighting mendapatkan hasil rata—rata jarak antara hasil manual dengan Simple Additive Weighting (SAW) sebesar 4,8 dengan standar deviasi 3,982 dan proses klasifikasi dengan Naïve Bayes menghasilkan akurasi sebesar 73,33% dan error sebesar 26,67%, dengan nilai error tersebut hasil dari klasifikasi masih memiliki kekurangan dalam memprediksikan kelayakan karyawan terbaik.

Kata kunci: Algoritma SAW, Karyawan Terbaik, Naïve Bayes

1. Pendahuluan

PT Elnusa Petrofin (EPN) didirikan di Jakarta pada tanggal 5 Juli tahun 1996, EPN adalah anak perusahaan dari PT Elnusa Tbk (Perusahaan terbuka sejak 2008), dimana PT Elnusa Tbk sendiri merupakan Anak Perusahaan dari PT Pertamina (Persero). Awalnya, PT Elnusa Petrofin merupakan Divisi Fuel & Chemical dari PT Elnusa pada tahun 1990. Kemudian pada tahun 1993 mendapatkan amanah dari PT Pertamina untuk memproduksi Premix (Pertamax), Bahan Bakar Minyak Khusus (BBMK) dengan tingkat Oktan tinggi. Kemudian PT Elnusa Petrofin juga ditunjuk sebagai Distributor Premix (Pertamax) dan Super TT (Pertamax Plus) untuk area Jakarta, Bogor, Depok, Tangerang, Bekasi (Jabodetabek) serta sebagian wilayah Jawa Barat.

Sejak tahun 2005 PT Elnusa Petrofin telah berkembang menjadi perusahaan yang bergerak dibidang produk dan jasa migas. Saat ini PT Elnusa Petrofin telah diberikan ijin Niaga Umum oleh Pemerintah (Direktorat Jendral Minyak dan Gas) dimana Perusahaan diberi ijin Niaga dalam Bisnis Minyak dan Gas di sektor hilir. Hal ini berarti PT Elnusa Petrofin mempunyai hak untuk mengimpor, memproduksi, menjual mendistribusikan BBM untuk dijual di SPBU-SPBU yang berada di jaringan pemasaran perusahaan. Guna menghadapi tantangan seiring dengan perkembangan zaman, PT Elnusa Petrofin terus berinovasi untuk meningkatkan kompetensinya. PT Elnusa Petrofin memiliki jaringan bisnis yang luas meliputi Sumatra, Jawa, Bali, Kalimantan, Sulawesi, Maluku, Papua dan Nusa Tenggara dengan kantor cabang di berbagai kota besar di Indonesia.

Visi perusahaan adalah menjadi perusahaan nasional terkemuka di bidang jasa energy dan supply chain solution. PT Elnusa Petrofin (EPN) setiap tahunnya memberikan penghargaan kepada karyawan terbaik, penghargaan tersebut diberikan dengan harapan dapat memotivasi seluruh karyawan agar dapat bekerja dengan baik. Adapun proses penentuan karyawan terbaik pada PT Elnusa Petrofin (EPN) dilakukan dengan cara mengamati cara kerja karyawan, sehingga hal ini tentu saja akan sangat membutuhkan waktu yang lama dan hasilnya kurang maksimal. Terkadang sering terjadi kesalahan yang dibuat oleh pimpinan dalam menentukan karyawan terbaik, melihat permasalahan yang terjadi pada PT Elnusa Petrofin (EPN) maka Penulis mengajukan sebuah Algoritma untuk membantu pimpinan menentukan karyawan terbaik menggunakan Algoritma Simple Additive Weighting (SAW) yaitu suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu, diharapkan dengan menggunakan Algoritma Simple Additive Weighting (SAW) tersebut dapat menentukan karyawan yang terbaik dilihat dari perangkingan sistem.

Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut, metode ini membutuhkan proses normalisasi matriks keputusan X ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.[1]

Penelitian sebelumnya mengenai sistem pendukung keputusan pemilihan calon peserta olimpiade sains tingkat kabupaten langkat pada Madrasah Aliyah Negeri (MAN) 2 tanjung pura denganmenggunakan metode Simple Additive Weighting (SAW), metode ini dipilih karena mampu menyeleksi alternatif terbaik dari sejumlah alternatif, dalam pemilihan calon peserta olimpiade sains berdasarkan kriteria yang ditentukan. Dengan adanya metode Simple Additive Weighting (SAW) dapat menentukan siswa yang berhak mengikuti olimpiade sains berdasarkan seluruh kriteria penilaian dalam mengikuti olimpiade sains. [2]

Penelitian sebelumnya mengenai sistem pendukung keputusan rekomendasi penerima bantuan siswa miskin (BSM) dengan metode simple additive weighting (SAW), untuk menghilangkan halangan siswa miskin berpartisipasi untuk bersekolah dengan membantu siswa miskin memperoleh akses pelayanan pendidikan yang layak, mencegah putus sekolah, menarik siswa miskin untuk kembali bersekolah, membantu siswa memenuhi kebutuhan dalam kegiatan pembelajaran, mendukung program Wajib Belajar Pendidikan Dasar Sembilan Tahun (bahkan hingga tingkat menengah atas), serta membantu kelancaran program sekolah.. Metode ini salah satu metode yang dapat melakukan penilaian criteria majemuk dan detail dengan suatu kerangka berpikir yang komprehensif pertimbangan proses hirarki yang kemudian dilakukan perhitungan bobot untuk masing-masing kriteria dalam menentukan prioritas rekomendasi penerima bantuan siswa miskin (BSM) sesuai dengan kuota.[3]

Penelitian sebelumnya mengenai perancangan sistem pendukung keputusan seleksi penerimaan karyawan dengan metode Simple Additive Weighting (SAW) (studi kasus Toko Markas Hobby). Pengembangan aplikasi ini dengan menggunakan metode RUP (Rational Unified Process), dengan metodologi penelitian deskriptif dan metodologi penelitian tindakan, sedangkan implementasi sistem menggunakan bahasa pemrograman PHP dan MySQL sebagai database. Dengan adanya sistem pendukung keputusan dapat membantu bagian rekrutmen dalam pengambilan keputusan dalam proses rekrutmen di Markas Hobby lebih mudah dan cepat.[4]

Penelitian sebelumnya mengenai penerapan metode SAW (Simple Additive Weighting) dalam sistem pendukung keputusan untuk menentukan penerima beasiswa. Aplikasi berbasis komputer yang dibangun yaitu menggunakan bahasa pemrograman Java dan MySQL untuk media penyimpanan datanya. Analisis sistem dilakukan dengan menggunakan Unified Modelling Language (UML) dengan studi kasus yaitu pemberian beasiswa di SMK NU Kaplongan, Kabupaten Indramayu. Aplikasi ini diharapkan dapat membantu mempercepat proses seleksi dan pengambilan keputusan dalam menentukan siapa penerima beasiswa.[5]

Penelitian sebelumnya mengenai sistem pendukung keputusan penempatan jabatan menggunakan metode Simple Additive Weighting (SAW) berbasis web (studi kasus : SMK PGRI Pekan Baru), dimana selama ini pada proses penempatan jabatan hanya dilihat dari hasil tes dan beberapa persyaratan dasar lainya. Sebagian besar guru mengalami kesulitan beradaptasi dengan tugas-tugas yang harus dilaksanakan karena tidak memiliki latar belakang pengetahuan yang sesuai dengan posisi yang yang ditempatinya. Jika dibiarkan terus-menerus, hal ini akan berdampak negatif pada kinerja yang diberikan dan menghambat kemajuan sekolah. Oleh karena itu, Pihak sekolah mencari solusi agar dapat meminimalisasi kesalahan yang diakibatkan oleh kinerja guru, yaitu dengan cara menempatkan guru pada posisi atau bidang yang sesuai dengan kemampuannya.[6]

Penelitian sebelumnya mengenai sistem pendukung keputusan penilaian kinerja karyawan menggunakan metode SAW berbasis desktop agar mempermudah proses penilaian kinerja karyawan secara obyektif di LPM berdasarkan bobot dan kriteria-kriteria penilaian yang sudah ditentukan. Aplikasi Sistem Pendukung Keputusan Penilaian Kinerja Karyawan dapat digunakan oleh Lembaga Penjaminan Mutu Universitas Muhammadiyah Purwokerto untuk menilai kinerja karyawan secara obyektif. [7]

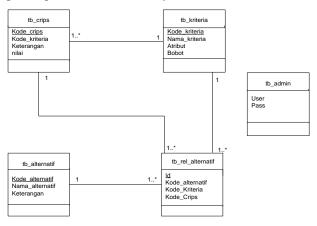
Penelitian sebelumnya mengenai penilaian prestasi kerja karyawan PTPN III Pematang Siantar dengan metode Simple Additive Weighting (SAW), dimana kriteria yang digunakan adalah sikap kerja karyawan, cara kerja karyawan, hasil karya karyawan dan hari mangkir karyawan. Sampel data yang digunakan sebanyak 5 dengan bobot yang berbeda pada setiap kriteria. Penelitian ini mengambil studi kasus PTPN III Penilaian Prestasi Kerja Pematang Siantar dengan hasil perhitungan bahwa 0,90 memiliki nilai tertinggi menurut perhitungan SAW.[8]

Penelitian sebelumnya mengenai implementasi metode TOPSIS dan SAW dalam memberikan reward pelanggan depot air minum. Dimana sampel yang digunakan sebanyak 6 pelanggan dengan kriteria penilaian adalah status pembayaran, status keaktifan pelanggan, lama berlangganan, jumlah pembelian, dan waktu pembelian. Dari hasil perbandingan kedua metode tersebut, diperoleh hasil bahwa perhitungan yang dilakukan dengan metode TOPSIS lebih baik dibandingkan dengan metode SAW, diperoleh hasil bahwa metode TOPSIS lebih tepat digunakan dalam pemberian reward pelanggan Depot Air Minum.[9]

Penelitian sebelumnya mengenai sistem pendukung keputusan penerimaan pegawai baru PT.PLN (Persero) kantor pusat dengan menggunakan metode Simple Additive Weighting (SAW). Penerimaan Pegawai Baru PT. PLN dilakukan sesuai dengan hasil seleksi Administrasi, General Aptitude Test (GAT), Akademis dan Bahasa Inggris, Psikotes dan FGD, Kesehatan dan wawancara yang dimiliki calon pegawai baru tersebut. Adapun kriteria yang telah ditentukan dalam tahap seleksi wawancara adalah Kedisiplinan (C1), Masa pengalaman informal/formal (C2), Ketaatan dalam melaksanakan tugas (C3),Kecakapan (C4). Kepemimpinan (C5), Keterampilan (C6), Hasil kerja yang diperoleh (C7), Moral dan perilaku (C8), Kerjasama (C9), Kreativitas dan inovasi (C10). Hasil dari aplikasi sistem pendukung keputusan ini adalah terpilihnya alternatif terbaik pelamar yang berhak diterima menjadi pegawai karena lulus seleksi secara terurut sesuai perankingan.[10]

2. Metode Penelitian

Langkah-langkah yang dilakukan dalam penelitian ini meliputi antara lan:


2.1. Analisis Masalah

PT Elnusa Petrofin (EPN) setiap tahunnya memberikan penghargaan kepada karyawan terbaik, penghargaan tersebut diberikan dengan harapan dapat memotivasi seluruh karyawan agar dapat bekerja dengan baik. Adapun proses penentuan karyawan terbaik pada PT Elnusa Petrofin (EPN) dilakukan dengan cara mengamati cara kerja karyawan, sehingga hal ini tentu saja akan sangat membutuhkan waktu yang lama dan hasilnya kurang maksimal. Terkadang sering terjadi kesalahan yang dibuat oleh pimpinan dalam

menentukan karyawan terbaik, melihat permasalahan yang terjadi pada PT Elnusa Petrofin (EPN).

2.2. Rancangan Sistem

Class Diagram digunakan untuk menggambarkan struktur dan deskripsi class serta hubungannya antara class. Gambar 1 adalah Class Diagram yang digunakan pada Aplikasi Penentuan Karyawan terbaik.

Gambar 1. Class Diagram Aplikasi Penentuan Karyawan Terbaik

Adapun kriteria yang digunakan adalah sebagai berikut:

- a. Prestasi Kerja
- b. Absensi
- c. Tanggung Jawab
- d. Loyalitas
- e. Kerjasama

Pada data masukan berfungsi untuk mengetahui bentuk data yang akan dimasukan ke dalam tabel melalui *form*, jumlah data serta format dari data yang akan dimasukan, berikut data masukan pada masing-masing *Form*.

Pada rancangan data masukan form log in hanya berupa user name dan password, Tabel 1 merupakan tabel data masukan log in.

Tabel 1. Data masukan form Log In

Data Masukan	Bentuk Data	Jumlah	Format
User Name	Text	5 Digit	[A – Z, a –z]
Password	Text	5 – 10 Digit	[*****]

Pada rancangan data masukan *form* kriteria yaitu Kode kriteria, Nama kriteria, Atribut dan Bobot. Tabel 2 merupakan tabel data masukan Form kriteria.

Tabel 2. Data Masukan Form Kriteria

Data	Bentuk	Jumlah	Format
Masukan	Data		
Kode	Text	4 Digit	[A-Z,0-9]
Kriteria			
Nama	Text	5 – 20 Digit	[A-Z, a-z]
Kriteria			
Atribut	Text	4 – 10 Digit	Benefit / Cost
Bobot	Number	1 – 3 digit	[9 – 999]

Pada rancangan data masukan *form* kriteria yaitu Kode Crips, Kode kriteria, Keterangan dan Nilai. Tabel 3 merupakan tabel data masukan Form Nilai Crips.

Tabel 3. Data Masukan Form Nilai Crips

Data Masukan	Bentuk	Jumlah	Format
	Data		
Kode Crips	Text	4 Digit	[A – Z, 0–9]
Kode Kriteria	Text	4 Digit	[A - Z, 0-9]
Keterangan	Text	5 – 20 Digit	[A - Z, a - z]
Nilai	Number	1 – 3 digit	[9 – 999]

Pada rancangan data masukan *form* Alternatif yaitu kode, Nama Alternatif dan Keterangan. Tabel 4 merupakan tabel data masukan form Alternatif.

Tabel 4. Data Masukan Form Alternatif

Data Masukan	Bentuk	Jumlah	Format
	Data		
Kode Alternatif	Text	4 Digit	[A – Z,0 –9]
Nama	Text	5 – 25 Digit	[A-Z, a-z]
Alternatif			
Keterangan	Text	5 – 25 Digit	[A-Z, a-z]

Pada rancangan data masukan *form* Relasi alternatif yaitu Id Karyawan, Kode Alternatif, Kode Kritera dan Kode Crips. Tabel 5 merupakan tabel data masukan form Relasi Alternatif:

Tabel 5. Data Masukan Form Relasi Alternatif

Data Masukan	Bentuk Data	Jumlah	Format
Id Karyawan	Text	4 Digit	[A – Z, 0–9]
Kode	Text	4 Digit	[A - Z, 0-9]
Alternatif			
Kode Kriteria	Text	4 Digit	[A - Z, 0-9]
Kode Crips	Text	4 Digit	[A - Z, 0-9]

Pada rancangan saat pemberian attribut pilih *Benefit* jika nama kriteria tersebut bernilai tinggi maka semakin bagus, dan pilih *Cost* jika nama kriteria tersebut bernilai rendah maka semakin bagus. Dan untuk bobot diberi nilai yang jika ditotal tidak boleh lebih dari 100. Tabel 6 merupakan tabel Kriteria beserta nilai bobot.

Tabel 6. Tabel Kriteria Beserta Nilai Bobot

Kode Kriteria	Nama Kriteria	Attribut	Bobot	
C001	Prestasi Kerja	Benefit	30	
C002	Absensi	Benefit	25	
C003	Tanggung Jawab	Benefit	20	
C004	Loyalitas	Benefit	15	
C005	Kerjasama	Benefit	10	

Menu Nilai *Crips* (nilai kriteria), masing-masing kriteria yang digunakan akan diberikan sebuah penilaian. Penilaian yang digunakan adalah karakter yaitu A, B, C, D dan E. masing-masing Karakter akan terdapat nilai bobot. Tabel 7 merupakan tabel nilai bobot.

Tabel 7. Tabel Nilai Bobot

Keterangan	Nilai Bobot
A	100
В	80
C	60
E	40
E	20

2.3. Implementasi dan Ujicoba Sistem

Sistem dibuat dengan bahasa pemrograman PHP dan database MySql.

Pengujian aplikasi pemilihan karyawan terbaik pada PT Elnusa Petrofin telah dilakukan menggunakan metode pengujian *black box*. Pengujian *black box* ini menitik beratkan pada fungsi sistem, metode ini digunakan untuk mengetahui apakah perangkat lunak berfungsi dengan benar. Tabel 8. merupakan Rencana Pengujian *Black Box*

Tabel 8. Rencana Pengujian Black Box

Kelas Uji	Butir Uji		Jenis Pengujian
Log In User	Pengecekan U	ser	Black Box
	terdaftar		
	Pengisian d	lata	Black Box
	kriteriaia		
Pengisian Data	Pengisian n	ilai	Black Box
	crips		
	Pengisian d	lata	Black Box
	alternatif		
	Pengisian d	lata	Black Box
	relasi alternatif		
	Pengubahan d	lata	Black Box
	Password		
Perhitungan	Perhitungan		Black Box
	Algoritma SAW	V	

Dalam pengujian ini akan diambil contoh kasus dari tahap pengujian program terhadap kesesuaian dengan kebutuhan sistem, diantaranya:

Pada pengujian *log in* hanya untuk *user* yang menggunakan aplikasi yaitu staf pemilihan karyawan terbaik, seperti tabel 9.

Tabel 9. Pengujian Log In

Hasil Uji (Data Normal)					
Data	Yang	Pengamatan	Kesimpulan		
Masukan	diharapkan				
User name	tampil halaman	Dapat masuk	[X] Diterima		
: Admin	utama dari	ke tampilan	[] Ditolak		
Password:	aplikasi	menu utama			
Admin	pemilihan calon	aplikasi			
Klik	karyawan				
tombol Log	terbaik				
In					
	Hasil Uji (D	ata Salah)			
Data	Yang	Pengamatan	Kesimpulan		
Masukan	diharapkan				
User name	Tidak dapat	Tampil	[X] Diterima		
: Admin	masuk ke menu	pesan error	[] Ditolak		
Password:	utama				
12345					
Klik					

Pada pengujian pengisian data akan diuji apakah *form* tersebut berhasil memasukan data, mengubah data serta menghapus data, Tabel 10 merupakan tabel pengujian data kriteria. Tabel 11 merupakan tabel pengujian data crips. Tabel 12 merupakan tabel pengujian data alternatif. Tabel 13 merupakan tabel pengujian data relasi alternatif. Tabel 14 merupakan tabel pengujian ubah password.

Tabel	10.	Pen	oniian	Data	Kriteria

Hasil Uji (Data Normal)				
Data	Yang	Pengamatan	Kesimpulan	
Masukan	diharapkan			
Tambah	Data masuk	Data berhasil	[X] Diterima	
Data	pada tabel	masuk ke tabel	[] Ditolak	
	kriteria	kriteria pada		
		database		
Ubah Data	Data dapat	Data pada	[X] Diterima	
	diubah dan	tabel berhasil	[] Ditolak	
	pada tabel	terubah		
	kriteria			
	terubah			
Hapus	Data dapat	Data pada	[X] Diterima	
Data	dihapus dan	tabel berhasil	[] Ditolak	
	pada tabel	terhapus		
	kriteria			
	terhapus			
	Hasil Uji	(Data Salah)		
Data	Yang	Pengamatan	Kesimpulan	
Masukan	diharapkan			
Data isian	Ada pesan	Pesan	[] Diterima	
tidak	bahwa	peringatan	[X] Ditolak	
lengkap	pengisian	tampil pada		
	data kriteria	form saat data		
	tidak boleh	tidak lengkap		
	kosong			

Tabel 11. Pengujian Data Crips

Hasil Uji (Data Normal)					
Data Masukan	Yang diharapkan	Pengamatan	Kesimpulan		
Tambah Data	Data masuk pada tabel Crips	Data berhasil masuk ke tabel Crips pada database	[X] Diterima [] Ditolak		
Ubah Data	Data dapat diubah dan pada tabel Crips terubah	Data pada tabel crips berhasil terubah	[X] Diterima [] Ditolak		
Hapus Data	Data dapat dihapus dan pada tabel Crips terhapus	Data pada tabel berhasil terhapus	[X] Diterima [] Ditolak		
		(Data Salah)			
Data Masukan	Yang diharapkan	Pengamatan	Kesimpulan		
Data isian tidak lengkap	Ada pesan bahwa pengisian data crips tidak boleh kosong	Pesan peringatan tampil pada form saat data tidak lengkap	[X] Diterima [] Ditolak		

Tabel 12. Pengujian Data Alternatif

Hasil Uji (Data Normal)					
Data Masukan	Yang diharapkan	Pengamatan	Kesimpulan		
Tambah	Data masuk	Data berhasil	[X] Diterima		
Data	pada tabel	masuk ke tabel	[] Ditolak		
	Alternatif	Alternatif pada database			
Ubah Data	Data dapat	Data pada tabel	[X] Diterima		
	diubah dan	Alternatif	[] Ditolak		
	pada tabel	berhasil terubah			
	Alternatif terubah				
Hapus Data	Data dapat	Data pada tabel	[X] Diterima		
	dihapus dan	Alternatif	[] Ditolak		
	pada tabel	berhasil			
	Alternatif	terhapus			
	terhapus				

Hasil Uji (Data Salah)					
Data Masukan	Yang diharapkan	Pengamatan	Kesimpulan		
Data isian tidak lengkap	Ada pesan bahwa pengisian data yang diberi tanda (*) tidak boleh kosong	Pesan peringatan tampil pada form saat data tidak lengkap	[] Diterima [X] Ditolak		

Tabel 13. Pengujian Data Relasi Alternatif

	Hasil Uji (Data Normal)					
Data	Yang	Pengamatan	Kesimpulan			
Masukan	diharapkan					
Tambah	Data masuk	Data berhasil	[X] Diterima			
Data	pada tabel	masuk ke tabel	[] Ditolak			
	Relasi	Relasi				
	Alternatif	Alternatif pada database				
Ubah Data	Data dapat	Data pada tabel	[X] Diterima			
	diubah dan	Relasi	Ditolak			
	pada tabel	Alternatif				
	Relasi	berhasil terubah				
	Alternatif					
	terubah					
Hapus Data	Data dapat	Data pada tabel	[X] Diterima			
	dihapus dan	Relasi	[] Ditolak			
	pada tabel	Alternatif				
	Relasi Alternatif	berhasil				
		terhapus				
	terhapus	(Data Salah)				
Data	Yang	Pengamatan	Kesimpulan			
Masukan	diharapkan	1 Cligalilatan	Keshiipulan			
Data isian	Ada pesan	Pesan	[] Diterima			
tidak	bahwa	peringatan	[X] Ditolak			
lengkap	pengisian	tampil pada				
- 1	data yang	form saat data				
	diberi tanda	tidak lengkap				
	(*) tidak					
	boleh kosong					

Tabel 14.: pengujian Ubah Password

	Hasil Uji (Data Normal)				
Data Masukan	Yang diharapkan	Pengamatan	Kesimpulan		
Simpan Data	Data password pada tabel admin terubah	Data password username berhasil diubah	[X] Diterima [] Ditolak		
	Hasil Uji	(Data Salah)			
Data Masukan	Yang diharapkan	Pengamatan	Kesimpulan		
Data isian tidak lengkap	Ada pesan bahwa pengisian password tidak boleh	Pesan peringatan tampil pada form saat data tidak lengkap	[] Diterima [X] Ditolak		

Pada pengujian form perhitungan akan dilakukan pengamatan apakah proses perhitungan sudah sesuai dengan algortima SAW seperti tabel 15.

Tabel 15. Pengujian Perhitungan

Hasil Uji (Data Normal)						
Data Yang Pengamatan Kesimpulan						
Masukan diharapkan						

Siswanto, Suprihono

Proses	Algoritma	Algoritma	[X] Diterima
Algoritma SAW	berjalan sesuai dengan proses dan dapat ditampilkan rank dari masing-masing calon karyawan terbaik	berjalan dan sesuai dengan perhitungan serta dapat ditampilkan secara <i>rank</i> dari calon karyawan	[] Ditolak
		terbaik	

Dari pengujian di atas dapat disimpulkan bahwa perangkat lunak yang dibangun bebas dari kesalahan sintaks dan secara fungsional mengeluarkan hasil yang sesuai dengan yang diharapkan.

3. Hasil dan Pembahasan

3.1. Hasil Ujicoba Aplikasi

Setelah berhasil masuk maka akan tampil halaman menu utama seperti Gambar 2.

Gambar 2. Tampilan Awal Aplikasi

Setelah semua Alternatif diberikan penilian, maka langkah berikutnya adalah melakukan proses perhitungan dengan Algoritma Simple Additive Weghting (SAW). Pilih menu perhitungan dan akan tampil tampilan seperti Gambar 3.

Home	₩ Kriteria •	1 Alternatif ▼	≡ Perhitungan	Password	€ Logout
Perh	itungan				
Hasil A	nalisa				

	Prestasi Kerja	Absensi	Tanggung Jawab	Loyalitas	Kerjasama
loko	A	С	С	Е	В
Rudi	A	В	D	A	С
indah	В	С	В	Е	A
	Prestasi Kerja	Absensi	Tanggung Jawab	Loyalitas	Kerjasama
oko	100	60	60	20	80
Rudi	100	80	40	100	60
Indah	80	60	80	20	100

Pada aplikasi akan ditampilkan secara Ranking masingmasing karyawan, sehingga dapat diketahui secara berurut nilai dari masing-masing karyawan.

Gambar 3. Tampilan Perhitungan SAW

Perangkingan setiap alternatif secara manual didapatkan dari hasil simulasi perangkingan data yang dilakukan oleh staff HRD PT Elnusa Petrofin. Simulasi ini dilakukan dengan menggunakan data dari karyawan dari arsip HRD PT Elnusa Petrofin, dari data tersebut HRD PT Elnusa Petrofin. melakukan perangkingan secara manual berdasarkan cara yang memang konvensional dilakukan yaitu mengurutkan data dari berkas dan portofolio dari karyawan yang terbaik sesuai dengan pandangan staff HRD PT Elnusa Petrofin perbandingan dan jarak antara perangkingan manual dan Simple Additive Weighting (SAW) dapat dilihat pada Tabel 16.

Tabel 16. Jarak Perangkingan Manual Dengan Simple Additive Weighting

Id Karyawan	Rangking	Rangking	Jarak
	Manual	SAW	
K001	16	14	2
K002	10	8	2
K003	14	19	5
K004	9	7	2
K005	4	13	9
K006	12	12	0
K007	17	16	1
K008	20	20	0
K009	18	11	7
K010	3	5	2
K011	6	10	4
K012	19	17	2 3 2
K013	15	18	3
K014	1_	3	2
K015	7	2	5
K016	5	9	4
K017	2	12	10
K018	8	1	7
K019	11	6	5
K020	13	4	9
K021	26	30	4
K022	39	31	2
K023	40	32	8
K024	31	33	2
K025	27	34	7
K026	35	35	0
K027	22	36	13
K028	38	37	1
K029	21	38	17
K030	33	39	6
K031	36	40	4
K032	29	21	8
K033	34	22	12
K034	23	23	0

K040	30	29	9
K039	24	28	4
K038	28	27	1
K037	32	26	6
K036	25	25	0
K035	37	24	7

Dari perhitungan yang sudah dilakukan pada tabel 16 didapatkan nilai rata-rata jarak adalah 4,8 dengan *standar deviasi* 3,982.

3.2. Pembahasan Evaluasi Ujicoba Aplikasi

Evaluasi tahap klasifikasi akan dilakukan denganmenguji akurasi dan *error* dari algoritma *Naïve Bayes*. Persamaan yang digunakan untuk menghitung akurasi dapat dilihat pada persamaan (1).

$$Akurasi = \frac{\sum data \ valid}{\sum data \ testing} \times 100\%$$
 (1)

Dan untuk menghitung persentase *error* dari algoritma *Naïve Bayes* dapat dilihat pada persamaan (2).

Error =
$$\frac{\sum \text{data tidak valid}}{\sum \text{data testing}} \times 100\%$$
 (2)

Data untuk pengujian diambil dari data yang dimiliki PT Elnusa Petrofin sebanyak 40 orang, dengan data untuk pengetahuan *Naïve Bayes* sebanyak 25 (62,5%) dan data uji sebanyak 15 (37,5%), hasil pengujian dapat dilihat pada tabel 16.

Tabel 17. Pengujian Naïve Bayes

Id Karyawan	Hasil Asli	Hasil Naïve	Kesimpulan
		Bayes	
K009	Layak	Layak	Valid
K003	Tidak Layak	Tidak Layak	Valid
K017	Tidak Layak	Tidak Layak	Valid
K002	Layak	Layak	Valid
K015	Layak	Tidak Layak	Tidak Valid
K018	Tidak Layak	Tidak Layak	Valid
K001	Layak	Tidak Layak	Tidak Valid
K011	Layak	Layak	Valid
K036	Layak	Layak	Valid
K024	Layak	Layak	Valid
K033	Layak	Tidak Layak	Tidak Valid
K040	Tidak Layak	Tidak Layak	Valid
K023	Layak	Tidak Layak	Tidak Valid
K010	Layak	Layak	Valid
K038	Layak	Layak	Valid

Dari perhitungan yang sudah dilakukan berdasarkan hasil tabel 17 didapatkan hasil akurasi sebesar 73,33% dan *error* sebesar 26,67%.

4. Kesimpulan

Kesimpulan yang dapat diambil dari penelitian ini adalah dengan adanya aplikasi pemilihan karyawan terbaik menggunakan Algoritma Simple Additive Weighting (SAW), maka Pimpinan dapat memutuskan siapa karyawan terbaik, Algoritma Simple Additive Weighting (SAW) dapat diterapkan pada Pemilihan calon karyawan terbaik pada PT Elnusa Petrofin.

Algoritma Simple Additive Weighting (SAW) dapat diterapkan pada Pemilihan karyawan terbaik pada PT Elnusa Petrofin dan hasil proses perangkingan dengan Simple Additive Weighting mendapatkan hasil rata—rata jarak antara hasil manual dengan Simple Additive Weighting (SAW) sebesar 4,8 dengan standar deviasi 3,982 dan proses klasifikasi dengan Naïve Bayes menghasilkan akurasi sebesar 73,33% dan error sebesar 26,67%, dengan nilai error tersebut hasil dari klasifikasi masih memiliki kekurangan dalam memprediksikan kelayakan karyawan terbaik.

Adapun saran yang dapat disampaikan untuk pengembangan sistem lebih lanjut adalah sebagai berikut: Algoritma Simple Additive Weighting (SAW) dapat dioptimalisasi menggunakan algoritma Analytical Hierarchy Process (AHP) dan algoritma Fuzzy Logic.

Daftar Rujukan

- Febrina, Sari, 2018, Metode Dalam Pengambilan Keputusan. Yogyakarta: Penerbit Deepublish. pp. 85-90. ISBN: 978-602-453-982-5.
- [2] Harold S., 2015. Sistem Pendukung Keputusan Pemilihan Calon Peserta Olimpiade Sains Tingkat Kabupaten Langkat Pada Madrasah Aliyah Negeri (MAN) 2 Tanjung Pura Dengan menggunakan Metode Simple Additive Weighting (Saw). Jurnal Times , Vol. IV No 2. pp. 24-30. ISSN: 2337 – 3601.
- [3] Oktovantua T. B. B., 2015 Sistem Pendukung Keputusan Rekomendasi Penerima Bantuan Siswa Miskin (BSM) Dengan Metode Simple Additive Weighting (SAW) .Studi Kasus: SMP N2 Tarabintang. Jurnal Pelita Informatika Budi Darma, Volume: Ix, Nomor: 3, April 2015, pp.162-165. ISSN: 2301-9425
- [4] Dadi R., Siti K., 2017. Perancangan Sistem Pendukung Keputusan Seleksi Penerimaan Karyawan Dengan Metode Simple Additive Weighting (SAW) (Studi Kasus Toko Markas Hobby)", Jurnal Competech & Bisnis, Vol.11, No 1, Juni 2017. pp.39-46. ISSN 2442-4943.
- [5] Ridho T. S., Moh. T. A., Jaenudin, 2017. Penerapan Metode SAW (Simple Additive Weighting) dalam Sistem Pendukung Keputusan untuk Menentukan Penerima Beasiswa. Prosiding Saintiks FTIK UNIKOM 2017. pp. 61-68. ISSN: 2598 – 7550.
- [6] Anita F., Hendry F., M. Iqbal D., 2017. Sistem Pendukung Keputusan Penempatan Jabatan Menggunakan Metode Simple Additive Weighting (SAW) Berbasis Web (Studi Kasus: SMK PGRI Pekan Baru). Jurnal Ilmu Komputer, Vol.6 No.1 (2017), pp. 57-63. ISSN: 2579 – 3918.
- [7] Ades G. A., Hindayati M., Aman S., 2017. Sistem Pendukung Keputusan Penilaian Kinerja Karyawan Menggunakan Metode SAW. JUITA Vol. III Nomor 4, November 2015, pp.193. ISSN: 2086-9398.
- [8] Agus P. W., 2017. Penilaian Prestasi Kerja Karyawan PTPN III Pematang Siantar Dengan Metode Simple Additive Weighting (SAW). Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK). Volume (2) No. 1 Juli 2017. pp.84-95. ISSN: 2527-5771/EISSN: 2549-7839. Tersedia di: http://tunasbangsa.ac.id/ejurnal/index.php/jurasik. [Accessed 28 Desember 2018].
- [9] Agus P. W., 2017. Implementasi Metode TOPSIS Dan SAW Dalam Memberikan Reward Pelanggan. Kumpulan jurnal Ilmu Komputer (KLIK). Volume 04, No.01, Februari 2017, pp. 88-101. ISSN:2406-7857.
- [10] Yasni D., Herlinda D. C., 2015. Sistem Pendukung Keputusan Penerimaan Pegawai Baru Pt.Pln (Persero) Kantor Pusat Dengan Menggunakan Metode Simple Additive Weighting (Saw). Jurnal Teknik Informatika Vol. 8 No. 1 April 2015, pp. 39-47. E-ISSN: 2549-7901.