Data Mining Untuk Klasifikasi Produk Menggunakan Algoritma K-Nearest Neighbor Pada Toko Online

Authors

  • Ma’ruf Aziz Muzani Universitas AMIKOM Yogyakarta
  • M. Iqbal Abdullah Sukri2 Universitas AMIKOM Yogyakarta
  • Syifa Nur Fauziah Universitas AMIKOM Yogyakarta
  • Agus Fatkhurohman Universitas AMIKOM Yogyakarta
  • Dhani Ariatmanto Universitas AMIKOM Yogyakarta

Keywords:

Classification, E-marketplace, K-Nearest Neighbor, Text Mining

Abstract

The rapid growth of e-commerce in Indonesia has been largely facilitated by the presence of e-marketplaces. The e-marketplace trend in Indonesia continues to develop along with the development of technology and the internet. During its development, e-marketplaces offer more and more products. As a result, buyers need more effort to find the product they want. In order to facilitate the search for these products, a product classification is carried out. This study classifies products in the Shopee emarketplace using the K-Nearest Neighbor algorithm. The product data used comes from web scraping in the categories of cellphones and accessories, Muslim fashion, and home appliances. The stages of the classification system begin with the preprocessing stage, then the term weighting stage uses the TF-IDF method, then cosine similarity to calculate the similarity distance between documents, and then sorting the results of the cosine similarity to retrieve data for the number of k values. Based on testing on 9 product data with three different k values. Obtained an average that shows the lowest accuracy, precision, and recall results when the value of k = 3. The accuracy result is 88.89%, precision is 83.33%, and a recall of 100% is obtained when using the value of k = 5 or k = 7.

References

S. Kemp and S. Moey, "Datareportal," 18 September 2019. [Online]. Available:

https://datareportal.com/reports/digital-2019ecommerce-in-indonesia. [Accessed 17 May 2020].

D. Sebastian, "Implementasi Algoritma K-Nearest Neighbor Untuk Melakukan Klasifikasi Produk dari Beberapa E-marketplace," Jurnal Teknik Informatika dan Sistem Informasi, vol. 5 Nomor 1 April 2019, pp. 51-61, 2019.

A.-H. Tan, "Text Mining: The state of the art and challenges," Proceedings of the PAKDD 1999 Workshop on Knowledge Discovery from Advanced Databases, vol. 8, pp. 65-70, 1999.

S. Gaikwad, A. Chaugule and P. Patil, "Text Mining Methods and Techniques," International Journal of Computer Applications, vol. 85, pp. 42-45, 2014.

I. Jaya, A. Hizriadi and E. Purba, "Klasifikasi Surat Laporan Kehilangan Kepolisian Menggunakan Algoritma K-Nearest Neighbor," TECHSI, vol. 10, pp. 121-128, 2018.

D. Fauziah, M. A and N. I, "Klasifikasi Berita Politik Menggunakan Algoritma K-Nearest Neigbor," Berkala Sainstek, vol. VI, pp. 106-114, 2018.

D. Sebastian, "Rancang Bangun Website Klasifikasi

Untuk Pencarian Produk Pasar Online Menggunakan Algoritma K-Nearest Neighbor," Jurnal Teknik Informatika dan Sistem Informasi, vol. III, pp. 417-432, 2017.

M. Rivki and A. Bachtiar, "Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter yang Menggunakan Bahasa Indonesia," Jurnal Sistem Informasi, vol. XIII, pp. 31-37, 2017.

A. D. M. Indonesia, "Digimind," [Online]. Available: https://digimind.id/10-kategori-produkterlaris-shopee. [Accessed 25 January 2021]

Downloads

Published

2021-09-25

How to Cite

Ma’ruf Aziz Muzani, M. Iqbal Abdullah Sukri2, Syifa Nur Fauziah, Agus Fatkhurohman, & Dhani Ariatmanto. (2021). Data Mining Untuk Klasifikasi Produk Menggunakan Algoritma K-Nearest Neighbor Pada Toko Online. Prosiding SISFOTEK, 5(1), 141 - 145. Retrieved from http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/273

Issue

Section

2. Rekayasa Sistem Informasi