Analisa Power Mode ESP32 Untuk Catu Daya Pada Sistem Berbasis IoT


  • Yani Prabowo Universitas Budi Luhur
  • Suwasti Broto Universitas Budi Luhur
  • Tatang Wirawan Wisnuadji Universitas Budi Luhur
  • Siswanto Universitas Budi Luhur


IoT, ESP32, BLE, power mode, portable


One of the best choices for IoT applications based on WiFi is the ESP32 microcontroller. In addition, ESP32 is a device that has built-in BLE (Bluetooth Low Energy) support, so it is very suitable for portable applications. However, one of the problems that arise for portable applications is the existence of battery power support, so a way must be found to be able to apply significant battery usage savings techniques, which in the ESP32 microcontroller is known as Sleep-Mode, which aims to extend the duration of battery power usage on microcontroller. The method that will be applied to the system is an analysis of the use of Li-Ion 18650 batteries as the main support for providing electricity for the ESP32. The first thing to do is to analyze the power supply for several Power Modes from the ESP32, where time duration tests will be carried out for Li-Ion 18650 batteries for each type of ESP32 Power Mode, namely Active Mode, Modem Sleep Mode, Light Sleep Mode, Deep Sleep Mode , and Hibernation Mode. The results obtained are the Li-Ion battery capacity values that must be provided to support the operation of the ESP32 system device as the heart of the portable IoT system.


A. Prafanto, E. Budiman, P. P. Widagdo, G. M. Putra, and R. Wardhana, “Pendeteksi Kehadiran menggunakan ESP32 untuk Sistem Pengunci Pintu Otomatis,” JTT (Jurnal Teknol. Ter., vol. 7, no. 1, p. 37, 2021, doi: 10.31884/jtt.v7i1.318.

A. Ramschie, J. Makal, R. Katuuk, and ..., “Pemanfaatan ESP32 Pada Sistem Keamanan Rumah Tinggal Berbasis IoT,” … Work. Natl. …, pp. 4–5, 2021, [Online]. Available:

D. A. R. Fajrika hadnis Putra, Kemas Muslim Lhaksmana, “Aplikasi IoT untuk Rumah Pintar dengan,” J. e-Proceeding Eng., vol. 5, no. 1, pp. 1746–1760, 2018.

P. A. A. P. Basabilik, “Rancang Bangun Sistem Pendeteksi Jatuh Berbasis Internet of Things,” Prism. Fis., vol. 9, no. 2, pp. 110–116, 2021.

T. S. Rao, P. Pranay, S. Narayana, Y. Reddy, Sunil, and P. Kaur, “ESP32 Based Implementation of Water Quality and Quantity Regulating System,” Proc. 3rd Int. Conf. Integr. Intell. Comput. Commun. Secur. (ICIIC 2021), vol. 4, no. Iciic, pp. 122–129, 2021, doi: 10.2991/ahis.k.210913.016.

M. T. Afif and I. A. P. Pratiwi, “Analisis Perbandingan Baterai Lithium-Ion, Lithium-Polymer, Lead Acid Dan Nickel-Metal Hydride Pada Penggunaan Mobil Listrik-Review,” J. Rekayasa Mesin, vol. 6, no. 2, pp. 95–99, 2015.

D. R. Kim, J. W. Kang, T. H. Eom, J. M. Kim, J. Lee, and C. Y. Won, “Rapid-charging solution for 18650 cylindrical lithium-ion battery packs for forklifts,” J. Electrochem. Sci. Technol., vol. 9, no. 3, pp. 184–194, 2018, doi: 10.5229/JECST.2018.9.3.184.

T. Haryanto, “Perancangan Energi Terbarukan Solar Panel Untuk Essential Load Dengan Sistem Switch,” J. Tek. Mesin, vol. 10, no. 1, p. 43, 2021, doi: 10.22441/jtm.v10i1.4779.

T. Majaw, R. Deka, S. Roy, and B. Goswami, “Solar Charge Controllers using MPPT and PWM: A Review,” ADBU J. Electr. Electron. Eng., vol. 2, no. 1, pp. 1–4, 2018, [Online]. Available:

X. Hua and A. Thomas, “Effect of dynamic loads and vibrations on lithium-ion batteries,” J. Low Freq. Noise Vib. Act. Control, vol. 40, no. 4, pp. 1927–1934, 2021, doi: 10.1177/14613484211008112.

Ardutech, “Mengenal ESP32 Development Kit untuk IoT,” Web Page, 2020. (accessed Sep. 02, 2022).




How to Cite

Yani Prabowo, Suwasti Broto, Tatang Wirawan Wisnuadji, & Siswanto. (2022). Analisa Power Mode ESP32 Untuk Catu Daya Pada Sistem Berbasis IoT. Prosiding SISFOTEK, 6(1), 150-154. Retrieved from



5. Teknologi & Komputer