Uji Kinerja K-Means Clustering Menggunakan Davies-Bouldin Index Pada Pengelompokan Data Prestasi Siswa

Authors

  • Imam T. Umagapi Universitas Handayani Makassar
  • Basirung Umaternate Universitas Handayani Makassar
  • Hazriani Hazriani Universitas Handayani Makassar
  • Yuyun Yuyun Universitas Handayani Makassar

Keywords:

Clustering, Elbow method, Davies-Bouldin Index

Abstract

This research investigates how the values of clustered datasets, both normalized and non-normalized, influence the computation of Euclidean distance in the K-means algorithm. Additionally, it examines the impact of varying cluster quantities, identified through the elbow method, on the evaluation of the Davies-Bouldin Index (DBI). A dataset comprising 174 records undergoes mining using the CRISP-DM (Cross-Industry Standard Process for Data Mining) approach. In the data preparation phase, the min-max algorithm is applied to ensure that attribute values within the dataset are not diminished relative to each other. Concerning the selection of an optimal K value, the elbow method is employed. In this investigation, two K values exhibit significant mean reduction: the fourth and third cluster quantities. The DBI results for 3 clusters show a smaller value of 0.9250 compared to the DBI result for 4 clusters, which is 1.1584. The fundamental principle of evaluating the Davies-Bouldin Index is that a smaller DBI value (approaching zero but not reaching the minimum) indicates a better cluster. These findings contribute to a better understanding of the evaluation techniques involving the elbow method and Davies-Bouldin Index in clustering analysis and offer insights into the relationship between determining cluster quantities and clustering performance.

References

Suyanto. 2017. Data Mining untuk Klasifikasi dan Klasterisasi Data. Edisi Pertama. Bandung: Penerbit Informatika, 2017. p. 342. 978-602-6232-36-6

Anita Fitria Febrianti, A. H. C. A. (2018). K-Means Clustering Denganmetode Elbow Untuk Pengelompokan Kabupaten Dan Kota Di Jawa Timur Berdasarkan Indikator Kemiskinan. Jurnal Teknologi Dan Pendidikan, 8(978-602-5793-40–0), 863–870.

Apriliani, A., Zainuddin, H., Hasanuddin, Z. B., Handayani Makassar, S., & Pembangunan Nasional Veteran Jawa Timur, U. (2020). Peramalan Tren Penjualan Menu Restoran Menggunakan Metode Single Moving Average. 7(6), 1161–1168. https://doi.org/10.25126/jtiik.202072732

Ardiada, I. M. D., Sudarma, M., & Giriantari, D. (2019). Text Mining pada Sosial Media untuk Mendeteksi Emosi Pengguna Menggunakan Metode Support Vector Machine dan K-Nearest Neighbour. Majalah Ilmiah Teknologi Elektro, 18(1), 55. https://doi.org/10.24843/mite.2019.v18i01.p08

Budiman, I., Prahasto, T., & Christyono, Y. (2012). Data Clustering Menggunakan Metodologi Crisp-Dm Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma. In Seminar Nasional Aplikasi Teknologi Informasi.

Kurniawan, S., Gata, W., Ayu Puspitawati, D., Tabrani, M., Novel, K., Sarjana, P., Komputer, I., Nusa Mandiri Jakarta, S., & Informasi, S. (2017). Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada Komentar Media Berita Online. Masa Berlaku Mulai, 1(3), 176–183.

Lestari, W., Bina, S., & Kendari, B. (2019). Clustering Data Mahasiswa Menggunakan Algoritma K-Means Untuk Menunjang Strategi Promosi (Studi Kasus : STMIK Bina Bangsa Kendari). In SIMKOM (Vol. 4, Issue 2). http://e-jurnal.stmikbinsa.ac.id/index.php/simkom35

Mukrodin1), R. T. D. S. R. E. (2022). Data Mining Clustering Data Obat-Obatan Menggunakan Algoritma K-Means pada RSU An Ni’Mah Wangon. JIKA (Jurnal Informatika), 7, 165–172.

Downloads

Published

2023-10-17

How to Cite

Imam T. Umagapi, Basirung Umaternate, Hazriani, H., & Yuyun, Y. (2023). Uji Kinerja K-Means Clustering Menggunakan Davies-Bouldin Index Pada Pengelompokan Data Prestasi Siswa. Prosiding SISFOTEK, 7(1), 303 - 308. Retrieved from http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/411

Issue

Section

3. Data dan Diseminasi Informasi
bk8