Analisis Sentimen Pandangan Masyarakat Terhadap Uji Emisi di Twitter Menggunakan Metode Support Vector Machine
Keywords:
air pollution, emission test, public sentiment, social media twitter, support vector machineAbstract
Air pollution caused by motor vehicles is a major problem today. To reduce the dangers of air pollution and pollution caused by increasing motor vehicle users, the government immediately enacted legal action against vehicles that did not conduct or pass emission tests. From these government actions there are various kinds of public opinions, especially on social media twitter. This study aims to classify public sentiment towards emission tests expressed on twitter social media by collecting comment data and labeling it as positive, negative, and neutral. The method used in this research with data amounting to 3459 comments uses Support Vector Machine (SVM). Meanwhile, to measure the performance of the SVM method using Confusion Matrix. The results of testing using the SVM method resulted in an accuracy of 76%, and the results of the classification obtained more positive class values. This states that the policies made by the government related to emission testing have received a positive response from the public.
References
I. Safira, S. W. Adi, A. Winanti, U. Pembangunan, and N. Veteran, “Efektivitas Peraturan Gubernur Jakarta Tentang Uji Emisi Terhadap Pencemaran Udara Di Dki Jakarta,” Triwikrama J. Ilmu Sosia, vol. 01, no. 08, pp. 40–50, 2023.
S. P. Dewi et al., “Pajak Lingkungan Sebagai Upaya Pengendalian Pencemaran Udara Dari Gas Buang Kendaraan Bermotor Di Indonesia,” J. Ilm. Ekon. dan Pajak, vol. 2, no. 1, pp. 7–13, 2022, [Online]. Available: https://ojs-ejak.id/index.php/
A. Usman, “SANKSI TIDAK MELAKUKAN ATAU TIDAK LULUS UJI EMISI KENDARAAN BERMOTOR,” Kementerian Hukum dan HAM RI. [Online]. Available: https://bpsdm-dev.kemenkumham.go.id/informasi-publik/publikasi/pojok-penyuluhan-hukum/sanksi-tidak-melakukan-atau-tidak-lulus-uji-emisi-kendaraan-bermotor
J. J. Elizabeth Michelle, Melvin Jusuf, “EFEKTIVITAS PELAKSANAAN KEBIJAKAN BERDASARKAN PERGUB NO 66 TAHUN 2020 TENTANG UJI EMISI KENDARAAN BERMOTOR DI JAKARTA,” ADIL J. Huk., vol. Vol.12 No., no. 66, 2021, [Online]. Available: https://academicjournal.yarsi.ac.id/index.php/Jurnal-ADIL/article/view/1920
M. H. Lazuardi, “Kebijakan Pajak Kendaraan Bermotor, Dikaji Dari Prinsip Pencemar Membayar,” J. Huk. Lingkung. Indones., vol. 7, no. 2, pp. 171–196, 2021, doi: 10.38011/jhli.v7i2.317.
I. Rasyidin Muqsith Rizqi Prasetyo and A. Musthafa, “Comparison between naive bayes method and support vector machine in sentiment analysis of the relocation of the Indonesian capital,” J. Mantik, vol. 7, no. 2, pp. 186–193, 2023.
L. Earlene Rendhiva, M. Daivany Nur Auilya Saleh, and R. Koesyan Dipo, “Implementasi Regresi Linier Untuk Waktu Pengiriman Barang,” pp. 600–605, 2023.
R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform., vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com
Dr.Suyanto, DATA MINING UNTUK KLASIFIKASI DAN KLASTERISASI DATA Data Edisi Revisi, Edisi Revi. Bandung: Informatika Bandung, 2019.
I. W. B. Suryawan, N. W. Utami, and K. Q. Fredlina, “Analisis Sentimen Review Wisatawan pada Objek Wisata Ubud Menggunakan Algoritma Support Vector Machine,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 133–140, 2023.
I. Daqiqil Id, MACHINE LEARNING: Teori, Studi Kasus dan implementasi Menggunakan Pyhton. Riau,Indonesia: UR PRESS, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0