Analisis Sentimen Ulasan Produk di E-Commerce Bukalapak Menggunakan Natural Language Processing

Authors

  • Elsa Sera Universitas Handayani Makassar
  • Hazriani Hazriani Universitas Handayani Makassar
  • Mirfan Mirfan Universitas Handayani Makassar
  • Yuyun Yuyun Universitas Handayani Makassar

Keywords:

sentiment analysis, product reviews, E-Commerce Bukalapak, Natural Language Processing, Naive Bayes model, TF-IDF method

Abstract

This research discusses the analysis of sentiment in product reviews on E-Commerce Bukalapak using Natural Language Processing (NLP). The study aims to fill the knowledge gap regarding the analysis of product reviews in online stores in Indonesia, specifically Bukalapak. The data used in this research were collected from various product categories, such as clothing, electronics, cosmetics, and others. The method employed in this study was the TF-IDF method to train the Naive Bayes model. The results of the research show that the Naive Bayes model trained using the TF-IDF method achieved an accuracy of 88%. This indicates that the model has good capability in predicting the sentiment of product reviews. The analysis of positive reviews reveals customer satisfaction with product quality, fast delivery, reasonable pricing, and receiving items as expected. On the other hand, the analysis of negative reviews uncovers the mismatch between customer expectations and the actual conditions regarding color, delivery, and product orders. This study contributes to a deeper understanding of sentiment analysis in product reviews on E-Commerce Bukalapak. The insights from this analysis can be utilized by Bukalapak to enhance the quality of their products and services, providing a more satisfying experience for customers.

References

A. Hanafiah et al., “Sentimen analisis terhadap customer review produk shopee berbasis wordcloud dengan algoritma naïve bayes classifier sentiment analysis of customer reviews of shopee products based on wordcloud using naïve bayes classifier algorithm,” vol. 6, pp. 230–236, 2023.

R. Siringoringo and J. Jamaludin, “Text Mining dan Klasterisasi Sentimen Pada Ulasan Produk Toko Online,” J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 1, pp. 41–48, 2019, doi: 10.34012/jutikomp.v2i1.456.

B. Kumar Jha, “Sentiment Analysis for E-Commerce Products Using Natural Language Processing,” Ann. R.S.C.B., vol. 25, no. 5, pp. 166–175, 2021, [Online]. Available: http://annalsofrscb.ro

P. Muslim and A. C. Februadi, “Memprediksi Efek Electronic Word Of Mouth Terhadap Brand Image, Trust dan Behavioural Intention Pada Pelanggan Kedai Kopi Rumah Sekara,” Pros. Ind. Res. …, pp. 13–14, 2022, [Online]. Available: https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/4359%0Ahttps://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/download/4359/2873

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 231–237, 2021, doi: 10.29207/resti.v5i2.2698.

R. L. Atimi and Enda Esyudha Pratama, “Implementasi Model Klasifikasi Sentimen Pada Review Produk Lazada Indonesia,” J. Sains dan Inform., vol. 8, no. 1, pp. 88–96, 2022, doi: 10.34128/jsi.v8i1.419.

N. P. JATI, “S Integrasi Kansei Engineering Dan Kano Berbasis Natural Language Processing (Nlp) Untuk Menunjang Pengembangan Produk Jasa Pada Pariwisata Candi …,” 2021, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/37978%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/37978/17522119.pdf?sequence=1

H. Juliana, F. Ekonomi, and U. E. Unggul, “Pengaruh Siaran Langsung Dan Manfaat Yang Dirasakan Terhadap Niat Beli Melalui Kepercayaan Konsumen Pada Aplikasi Tiktok Shop,” vol. 1, no. 6, pp. 1517–1538, 2023.

M. T. Anwar, D. Riandhita, A. Permana, P. Sistem, I. Industri, and J. Pusat, “Analisis Sentimen Masyarakat Indonesia Terhadap Produk Kendaraan Listrik Menggunakan VADER,” vol. 10, no. 1, pp. 783–792, 2023.

M. Amien, “Sejarah dan Perkembangan Teknik Natural Language Processing (NLP) Bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia,” no. 2007, pp. 1–7, 2023, [Online]. Available: http://arxiv.org/abs/2304.02746

E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” J. Eksplora Inform., vol. 10, no. 1, pp. 32–42, 2020, doi: 10.30864/eksplora.v10i1.390.

R. A. Hasan and T. Sutikno, “A Review on Big Data Sentiment Analysis Techniques,” Mesopotamian J. Big Data, pp. 6–13, 2021, doi: 10.58496/mjbd/2021/002.

Warnia Nengsih, M. Mahrus Zein, and Nazifa Hayati, “Coarse-Grained Sentiment Analysis Berbasis Natural Language Processing – Ulasan Hotel,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 1, pp. 41–48, 2021, doi: 10.22146/jnteti.v10i1.548.

Downloads

Published

2023-10-17

How to Cite

Elsa Sera, Hazriani, H., Mirfan, M., & Yuyun, Y. (2023). Analisis Sentimen Ulasan Produk di E-Commerce Bukalapak Menggunakan Natural Language Processing. Prosiding SISFOTEK, 7(1), 237 243. Retrieved from https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/406

Issue

Section

3. Data dan Diseminasi Informasi
bk8