Performansi K-NN, J48, Naive Bayes dan Regresi Logistik sebagai Algoritma Pengklasifikasi Diabetes
Keywords:
Diabetes, K-NN, J48, Naive Bayes, Logistics regressionAbstract
Diabetes is a chronic disease characterized by high blood sugar (glucose) levels. This disease is often found in adults who are elderly, but this disease can also attack people who are still young. Along with advances in machine learning technology to support decision makers, many predictive models are made of whether a person can be classified as diabetic or not by using certain algorithms. In this study, a prediction model was made whether a person is classified as diabetic or not, based on parameters/variables, namely weight, height, cholesterol levels, fasting sugar, non-fasting sugar, uric acid levels and gender. Prediction model is made using K-NN, J48 (based on decision tree), Naive Bayes and logistic regression classification algorithms. Then a performance analysis was carried out on the testing results of each of these algorithms, and it was found that the K-NN algorithm produced a prediction model with the highest accuracy compared to the three algorithms used in this study.
References
Hestiana, Dita Wahyu. 2017. Faktor-Faktor Yang Berhubungan Dengan Kepatuhan Dalam Pengelolaan Diet Pada Pasien Rawat Jalan Diabetes Mellitus Tipe 2 Di Kota Semarang. Journal Of Health Education, 2(2), 139-140.
Takdirillah, Robby, 2020. Apa itu machine learning? beserta pengertian dan cara kerjanya. Dicoding. Tersedia di: https://www.dicoding.com/blog/machine-learning-adalah/. Diakses tanggal 26 Desember 2020.
Saravana, N, V. Gayathri, 2018. Performance and Classification Evaluation of J48 Algorithm and Kendall’s Based J48 Algorithm (KNJ48). IJCTT Journal, 26, 75-80.
Banu, G. Rasitha, Prakash, Illham Bashier, Summera, 2017. Applications of Data Mining Classification Techniques on Predicting Breast Cancer Disease. International Journal of Latest Trends in Engineering and Technology, 8, 322-325.
Kele?, Mümine Kaya. 2019. Breast Cancer Prediction and Detection Using Data Mining Classification Algorithms: A Comparative Study. Tehni?ki vjesnik, 26, 150-154.
Honesqi, Hanggi Dwifa. 2017. Klasifikasi Data Mining Untuk Menentukan Tingkat Persetujuan Kartu Kredit, Jurnal TEKNOIF, 5, 58-61.
Yustanti, Wiyli, 2012. Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah. Jurnal Matematika, Statistika dan Komputasi, 9.
Suhartono, Derwin, 2018. WEKA: Software untuk Memahami Konsep Data Mining. Binus University. https://socs.binus.ac.id/2018/11/29/weka-software-untuk- memahami-konsep-data-mining/. Diakses tanggal 15 November 2020.
Situmorang, Liswati. 2019. Analisa Kelayakan Usaha Mikro Kecil Dan Menengah (UMKM) Untuk Produk Krasida Pada PT. Pegadaian Menggunakan Metode J48. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 3, 6-9.
Kaunang, Fergie Joanda. 2018. Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia. Cogito Smart Journal, 4(2) 351.
J N. S. Diwandari and N. A. Setiawan. 2019. Perbandingan Algoritma J48 dan NBTREE Untuk Klasiifikasi Diagnosa Penyakit Pada Soybean”. Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA 2015). 208.
Agustiani, Sarifah, Ali Mustopa, Andi Saryoko, Windu Gata, Siti Khotimatul Wildah. 2020. Penerapan Algoritma J48 Untuk Deteksi Penyakit Tiroid Paradigma. Jurnal Informatika dan Komputer, 22, 154-155.
Widianto, Mochammad Haldi, 2019. Algoritma Naive Bayes. Binus University. Tersedia di: https://binus.ac.id/bandung/2019/12/algoritma-naive-bayes/. Diakses tanggal 22 Agustus 2021.
Handayani, Fitri, Feddy Setio Pribadi. 2015. Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110. Jurnal Teknik Elektro, 7, 20-22,
Hidayat, Anwar. Regresi Logistik. Statistikan. 2015. https://www.statistikian.com/2015/02/regresi-logistik.html. Diakses tanggal 5 November 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Agung Mulyo Widodo, Yanathifal Salsabila Anggraeni, Nizirwan Anwar, Arief Ichwani, Binastya Anggara Sekti
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0