Algoritma Adaptive Neuro Fuzzy Inference System Untuk Perkiraan Intensitas Curah Hujan

Authors

  • Ma’ruf Aziz Muzani Universitas AMIKOM Yogyakarta
  • M. Iqbal Abdullah Sukri Universitas AMIKOM Yogyakarta
  • Syifa Nur Fauziah Universitas AMIKOM Yogyakarta
  • Windha Mega Pradnya Universitas AMIKOM Yogyakarta
  • Andi Suyonto Universitas AMIKOM Yogyakarta

Keywords:

Prediction, Precipitation, Adaptive Neuro Fuzzy Inference System.

Abstract

Rainfall is the amount of rain that pours or falls within a certain period of time in an area. Rainfall information is useful in many areas. Therefore, fast, accurate and detailed information is indispensable. The method used to predict rainfall is the Adaptive Neuro Fuzzy Inference System (ANFIS) by utilizing daily rainfall data. Adaptive Neuro Fuzzy Inference System (ANFIS) method is a combination of artificial neural network and fuzzy logic. In the learning process, Adaptive Neuro Fuzzy Inference System (ANFIS) method is used LSE Recursive algorithm for advanced learning. The research phase starts from rainfall data collection, learning data, functional and non-functional analysis, ERD, Adaptive Neuro Fuzzy Inference System (ANFIS) method, and Root Means Squared Error (RMSE) calculation and the program is created using PHP and MYSQL as database storage. In this study, two input variables used in the form of rainfall data one day before and rainfall data two days earlier, obtained root means square error (RMSE) results of 17.7 in 1200 training data and 9.4 in 200 test data.

References

BPS, "Statistic rata rata suhu, tekanan udara, kecepatan angin, arah angin, curah hujan, hari hujan Kabupaten Sleman 2018," 9 Juli 2019. [Online]. Available: https://slemankab.bps.go.id/statictable/2019/07/09/511/rata-rata-suhu-udara-kelembaban-tekanan-udara-kecepatan-angin-arah-angin-curah-hujan-dan-hari-hujan-di-wilayah-kabupaten-sleman-2018.html.

L. Anggraini, "Anfis Dengan Membership Function Untuk Prediksi Curah Hujan Pada Data Rentet Waktu Multivariate," Technologia Vol 9, No., p. 1, 2018.

M. I. Azhar and W. F. Mahmudy, "Prediksi Curah Hujan Menggunakan Metode Adaptive Neuro Fuzzy," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X, pp. 4932-4939, 2018.

Haviluddin, H. S. Pakpahan and C. B. SInaga, "Peramalan Curah Hujan Dengan Pendekatan Adaptive Neuro Fuzzy Inference System," SAKTI, vol. 1, pp. 1-7, 2019.

s. kusumadewi and s. hartati, "Neuro-Fuzzy "Integrasi Sistem Fuzzy & Jaringan Syaraf Edisi 2," in Neuro-Fuzzy "Integrasi Sistem Fuzzy & Jaringan Syaraf Edisi 2, Yogyakarta, Graha Ilmu, 2010, pp. 377 - 380.

S. Makridakis, S. C. Wheelright and V. E. McGee, Metode dan Aplikasi Peramalan - edisi ke-2, jilid I, Jakarta: Erlangga, 1995.

Downloads

Published

2021-09-25

How to Cite

Ma’ruf Aziz Muzani, M. Iqbal Abdullah Sukri, Syifa Nur Fauziah, Windha Mega Pradnya, & Andi Suyonto. (2021). Algoritma Adaptive Neuro Fuzzy Inference System Untuk Perkiraan Intensitas Curah Hujan . Prosiding SISFOTEK, 5(1), 102 - 106. Retrieved from https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/266

Issue

Section

3. Data dan Diseminasi Informasi

Similar Articles

You may also start an advanced similarity search for this article.