Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir
Keywords:
SVM Algorithm, PSO, FloodAbstract
Flooding is one factor that can cause an economic slowdown in the affected area. Bandung is known as the "City of Flowers" and "City of Fashion," since the term refers to the city's many different modes that sprout up in various locations to facilitate the purchasing and selling process. Bandung not only gave rise to fashion trends that would become popular year after year, but it also had a plethora of traditional cuisine dishes that were both unique and exciting. Because of this, Bandung Regency is now one of the flood-prone areas in the country. It will be easier to deliver information to communities in the Bandung Regency that are included in Flood-Prone Areas or Non-Flood-Prone Areas if a model of flood-prone areas is created. The SVM method is a technique that may be used in classification and regression and has recently become quite popular. In terms of functions and conditions of problems that can be solved, SVM is similar to Artificial Neural Network (ANN), and to improve its accuracy, it uses what can be optimized with PSO (Particle Swarm Optimization), where the test data used is BNPB official website data, BPS Bandung District, and BMKG that has been processed. Data included in the classification criteria for Flood Prone Areas are Rainfall Intensity, Water Discharge, Area, Length of Rain, and Population Density. The accuracy rate generated by using the SVM algorithm is 85.71% and the AUC generated is 0.841 while the accuracy rate generated by using the PSM-based SVM algorithm is 97.62%. and AUC produced at 1,000
References
. J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
Agus Ambarwari, Qadhli Jafar Adrian, Yeni Herdiyeni. 2020. Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learninguntuk Identifikasi Tanaman. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). Vol. 4 No. 1. 117–122. ISSN Media Elektronik: 2580-0760.
Y. Tang and I. Sutskever, “Data normalization in the learning of restricted Boltzmann machines,”in Department of Computer Science, University of Toronto, Technical Report UTML-TR-11-2, 2011
E. Sutoyo, I. T. R. Yanto, R. R. Saedudin, and T. Herawan, “A soft set-based co-occurrence for clustering web user transactions,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 15, no. 3, 2017.
E. Sutoyo, I. T. R. Yanto, Y. Saadi, H. Chiroma, S. Hamid, and T. Herawan, “A Framework for Clustering of Web Users Transaction Based on Soft Set Theory,” in Springer, 2019, pp. 307–314.
I. T. R. Yanto, E. Sutoyo, A. Apriani, and O. Verdiansyah, “Fuzzy Soft Set for Rock Igneous Clasification,” in 2018 International Symposium on Advanced Intelligent Informatics (SAIN), 2018, pp. 199–203.
E. Sutoyo, R. R. Saedudin, I. T. R. Yanto, and A. Apriani, “Application of adaptive neuro-fuzzy inference system and chicken swarm optimization for classifying river water quality,” in Electrical, Electronics and Information Engineering (ICEEIE), 2017 5th International Conference on, 2017, pp. 118–122.
M.-L. Antonie, O. R. Zaiane, and A. Coman, “Application of data mining techniques for medical image classification,” in Proceedings of the Second International Conference on Multimedia Data Mining, 2001, pp. 94–101.
R. R. Saedudin, E. Sutoyo, S. Kasim, H. Mahdin, and I. T. R. Yanto, “Attribute selection on student performance dataset using maximum dependency attribute,” in Electrical, Electronics and Information Engineering (ICEEIE), 2017 5th International Conference on, 2017, pp. 176–179.
H. Chiroma et al., “An intelligent modeling of oil consumption,” Adv. Intell. Syst. Comput., vol. 320, 2015.
A. R. Muhajir, E. Sutoyo, and I. Darmawan, “Forecasting Model Penyakit Demam Berdarah Dengue Di Provinsi DKI Jakarta Menggunakan Algoritma Regresi Linier Untuk Mengetahui Kecenderungan Nilai Variabel Prediktor Terhadap Peningkatan Kasus,” Fountain Informatics J., vol. 4, no. 2, pp. 33–40, Nov. 2019.
N. Iriadi and N. Nuraeni, “Kajian Penerapan Metode Klasifikasi Data Mining Algoritma C4.5 Untuk Prediksi Kelayakan Kredit Pada Bank Mayapada Jakarta,” J. Tek. Komput. AMIK BSI, vol. 2, 201
R Riszky, M Sadikin. 2019. Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer. 103-108.
RA Pangestu, S Rudiarto, D Fitrianah. 2018. Aplikasi Web berbasis Algoritma K-NEAREST NEIGHBOUR untuk Menentukan Klasifikasi Barang STUDI KASUS: PERUM PERURI. Jurnal Ilmu Teknik dan Komputer. Vol. 2 No. 1 Januari. ISSN 2548-740X E-ISSN 2621-1491.
Lukman.2016. Penerapan Algoritma Support Vector Machine (SVM) dalam Pemilihan Beasiswa: STUDI KASUS SMK YAPIMDA. Faktor Exacta 9(1): 49-57, 2016 ISSN: 1979-276X.
Haddi, E., Liu, X., & Shi, Y., 2013. The Role of Text Pre-processing in Sentiment Analysis. First International Conference on Information Technology and Quantitative Management, 17, 26–32. https://doi.org/10.1016/j.procs.2013.05.05
Nahriyatunnur Hidayatus Solihah1), Muliadi1) , Arie Antasari Kushadiwijayanto2*). 2018. Estimasi Parameter Model Curah Hujan Menggunakan Particle Swarm Optimization (PSO): Studi Kasus Ketapang dan Melawi. Jurnal Fisika FLUX. 13-19. Volume 15, Nomor 1. ISSN : 2514-1713.
Mauliana, P., 2016, Prediksi Banjir Sungai Citarum dengan Logika Fuzzy Hasil Algoritma Particle Swarm Optimization. INFORMATIKA, 3, 269-276.
Ary, M., 2017. Aplikasi Prediksi Banjir Metode Fuzzy Logic, Hasil Algoritma Spade dan Algoritma PSO. In: Konferensi Nasional Ilmu Sosial & Teknologi (KNiST), 342-348.
Nurmahaludin., 2013. Perancangan Algoritma Belajar Jaringan Syaraf Tiruan Menggunakan Particle Swarm Optimization (PSO). Jurnal POROS TEKNIK, 5(1),18-23.
Factmawati, M., Widodo, B., and Wahyuningsih, N., 2014. Estimasi Autoregressive Integrated Average (ARIMA) Menggunakan Algoritma Particle Swarm Optimization (Studi Kasus: Peramalan Curah Hujan DAS Brangkal, Mojokerto). Surabaya: Skripsi ITS.
Dedy dan Anis Cherid. “Data Mining Pengolahan Data Calon Pekerja Migran Indonesia (PMI) dengan Penerapan Metode Klustering K-Means dan Metode Klasifikasi K-Nearest Neighbor (KNN): STUDI KASUS PT. SAM”. Jurnal Format Volume 9 Nomor 2 Tahun 2020 :: ISSN : 2089 – 5615 :: E-ISSN : 2722 – 7162.
Fikriya, Zulfa Afiq; Irawan, Mohammad Isa; Soetrisno, 2017. “Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital”, Jurnal Sains dan Seni ITS, Vol.6, No. 1. 2337-3520
Rahmansyah A., Dewi O., Andini P., Hastuti PN, Triana and Eka Suryana, Muhammad. 2016, Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine. Seminar Nasional Aplikasi Teknologi Informasi (SNATi) , 2018 p. A1 - A7.
Guyon, I., Weston, J., and Barnhill, S. (2002), Machine Learning, Gene Selection for Cancer Classification using Support Vector Machines, Netherland , Kluwer Academic Publishers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Hak cipta artikel milik penulis.
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0