Prototype Permainan Cerdas HTML 5 Berbasis Artificial Neural Network (ANN)

Authors

  • Pitrasaha Adytia STMIK Widya Cipta Dharma
  • Theresia Retno Widiana STMIK Widya Cipta Dharma

Keywords:

artificial neural network, smart game, fruit classification

Abstract

Multimedia is currently widely used as a medium of learning, especially in kindergarten. As in educational games that are often found today, they have a passive nature, which only clicks every button on the game so there is no difference. In this study, the use of an artificial network is used as a knowledge center for artificial intelligence in the guessing fruit game. The right artificial network to become the center of artificial intelligence because the artificial intelligence artificial network that continues to evolve is getting smarter. To overcome this problem, an artificial neural network (ANN) algorithm is needed to make educational games smarter. The game uses HTML as the user interface. The test method uses the Confusion Matrix test which can provide precision information, recall, fi-score, and Black Box Testing to see that the functions of the buttons in the game can work properly.  Describing the accuracy of how accurate the model is in classifying correctly. In this study, an accuracy value of 97% means that the model can classify fruit images well. During the image prediction process, it takes quite a long time, this is because the model recognizes the pattern/shape of each type of fruit. The more types of fruit used, the longer the model takes to predict.

References

S. Y. D. Tawas, G. S. Budhi, dan K. R. Purba, “Pembuatan Survival Action Game Dengan Non-Player Character Berbasis Neural Network,” Jurnal Infra, vol. 4, no. 2, hlm. 251-255., 2016.

R. H. Kusumodestoni, A. Sucipto, S. N. Ismiati, dan M. N. Abid, “Penerapan Algoritma Backpropagation Pada Game Pengenalan Nahwu Di Mi Darul Falah Jepara,” POSITIF?: Jurnal Sistem dan Teknologi Informasi, vol. 5, no. 2, hlm. 103, Des 2019, doi: 10.31961/positif.v5i2.831.

H. Yudha Prasetya, M. Aminul Akbar, dan I. Arwani, “Penerapan Neural Network untuk NPC Braking Decision pada Racing Game,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 5, hlm. 4148–4154, Mei 2019.

D. F. Haryati, G. Abdillah, dan A. I. Hadiana, “Klasifikasi Jenis Batubara Menggunakan Jaringan syaraf Tiruan Dengan Algoritma Backpropagation,” Seminar Nasional Teknologi Informasi dan Komunikasi, 2016.

J. Jamaludin, C. Rozikin, dan A. S. Y. Irawan, “Klasifikasi Jenis Buah Mangga dengan Metode Backpropagation,” Techné?: Jurnal Ilmiah Elektroteknika, vol. 20, no. 1, hlm. 1–12, Mar 2021, doi: 10.31358/techne.v20i1.231.

A. W. Putri, “Implementasi Artificial Neural Network (ANN) Backpropagation Untuk Klasifikasi Jenis Penyakit Pada Daun Tanaman Tomat,” MATHunesa: Jurnal Ilmiah Matematika, vol. 9, no. 2, hlm. 344–350, Agu 2021, doi: 10.26740/mathunesa.v9n2.p344-350.

Menteri Ketenagakerjaan Republik Indonesia, Penetapan Standar Kompetensi kerja Nasional Indonesia.

Downloads

Published

2022-10-27

How to Cite

Pitrasaha Adytia, & Theresia Retno Widiana. (2022). Prototype Permainan Cerdas HTML 5 Berbasis Artificial Neural Network (ANN). Prosiding SISFOTEK, 6(1), 76-80. Retrieved from https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/326

Issue

Section

2. Rekayasa Sistem Informasi