Implementasi Klasifikasi Naive Bayes Dalam Memprediksi Lama Studi Mahasiswa

Authors

  • Muhammad Fuad Universitas Handayani Makassar
  • Muhammad Arfah Wahlil Universitas Handayani Makassar
  • Hazriani Hazriani Universitas Handayani Makassar
  • Yuyun Yuyun Universitas Handayani Makassar

Keywords:

data mining, naive bayes rapid miner, training data, testing data

Abstract

Under normal conditions, undergraduate or undergraduate students from a university can complete their studies for 4 years or 8 semesters. In fact, many students complete their study period of more than 4 years. It is known that in the academic year 20XX/20XX there were 161 people who were accepted as students. Of the 161 people admitted, 100 people have completed their study period of about 4 years and the remaining 61 people have completed their studies for 5 years. Based on the problems above, this research implements a classification that can help the university predict the length of study of students who are currently studying in various study programs at the University. The method that the author presents in the classification for predicting the length of a student's study period is the Naive Bayes Algorithm. By using the Java-based Rapid Miner tool to classify graduation data. Then the implementation of data mining which is divided into 136 data training data and 25 data testing data with naive Bayes managed to obtain an accuracy rate of 82% which is also a relatively good parameter.

References

Alim Murtopo, A., Kelulusan Tepat Waktu, P., Alim Murtopo STMIK YMI TEGAL, A., & Pendidikan No, J. (n.d.). Prediksi Kelulusan Tepat Waktu Mahasiswa STMIK YMI Tegal Menggunakan Algoritma Naïve Bayes Time Graduation Prediction by Using Naïve Bayes Algorithm at STMIK YMI Tegal.

Armansyah, A., & Ramli, R. K. (2022). Model Prediksi Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 6(1), 1–10. https://doi.org/10.29408/edumatic.v6i1.4789

Hennry, K., Malelak, L., Made, I., Ardiada, D., Feoh, G., Informatika, T., Sains, K., Teknologi, D., Dhyana, U., Jalan, P., Padang, R., Tegaljaya, L., Utara, K., & Badung, K. (n.d.). Implementasi Klasifikasi Naive Bayes Dalam Memprediksi Lama Studi Mahasiswa (Studi Kasus : Universitas Dhyana Pura). https://doi.org/10.31598

Qisthiano, M. R., Kurniawan, T. B., Negara, E. S., & Akbar, M. (2021). Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA,5(3),987.https://doi.org/10.30865/mib.v5i3.3030

Setiyani, L., Wahidin, M., Awaludin, D., & Purwani, S. (2020). Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review. Faktor Exacta, 13(1), 35. https://doi.org/10.30998/faktorexacta.v13i1.5548

Downloads

Published

2023-10-17

How to Cite

Muhammad Fuad, Muhammad Arfah Wahlil, Hazriani, H., & Yuyun, Y. (2023). Implementasi Klasifikasi Naive Bayes Dalam Memprediksi Lama Studi Mahasiswa. Prosiding SISFOTEK, 7(1), 209 - 312. Retrieved from https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/392

Issue

Section

2. Rekayasa Sistem Informasi
bk8