Analisis Sentimen Pandangan Masyarakat Terhadap Piala Dunia U-17 Menggunakan Teknik Teks Mining
Keywords:
World Cup U-17, Naïve Bayes, Support Vector Machine (SVM), World Cup U-17, Naïve Bayes, upport Vector Machine (SVM)Abstract
One of the most loved sports by people around the world is football. Indonesia is one of the countries with the most football fans in the world. Indonesia is one of the countries with the largest number of football fans in the world, with 77% of the Indonesian population interested in football. Based on research analysis, Indonesia was selected to host the 2023 U-17 World Cup. The decision was made after the International Football Federation (FIFA) granted hosting rights. Specifically to the President of the Indonesian Football Federation (PSSI). This research aims to classify public opinion related to the event from twitter social media into 3 class categories, namely neutral, positive and negative. In this research, the methods used are Naïve Bayes algorithm and Support Vector Machine (SVM) algorithm. The classification results show that the naïve bayes method has an accuracy result of 0.73 while for the Support Vector Machine method the accuracy value obtained is 0.84 which shows that Support Vector Machine has better accuracy than Naive Bayes. Based on the model classification, positive sentiment has the highest percentage of other classes with a percentage of 35%, followed by negative sentiment with a percentage of 31% and neutral sentiment is the minority class with a percentage of 33%. From the percentage obtained, it can be concluded that the public has a positive view of the organisation of the U-17 world cup in Indonesia. It is hoped that in the future this research can be improved and implemented better with additional algorithm methods or with a larger amount of data.
References
R. Sulastiyono, A. Setiawan, and S. Nugroho, “Sentimen Analisis Pembatalan Indonesia Menjadi Tuan Rumah Piala Dunia U-20 Menggunakan Metode Naïve Bayes,” vol. 4, no. 4, pp. 1387–1394, 2023, doi: 10.47065/josh.v4i4.3737.
H. Ramanizar, A. Fajri, R. Binsar Sinaga, H. Mubarok, A. D. Pangestu, and D. S. Prasvita, “Analisis Sentimen Pengguna Twitter terhadap Konflik antara Palestina dan Israel Menggunakan Metode Naïve Bayesian Classification dan Support Vector Machine,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 166–175, 2021.
J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.
H. Rahmah, E. Putra, and U. Budiyanto, “KOMENTAR YOUTUBE INDONESIA TUAN RUMAH PIALA DUNIA U-20 IMPLEMENTATION OF KNN ALGORITHM FOR SENTIMENT ANALYSIS OF YOUTUBE COMMENTS ON THE INDONESIAN HOST OF FIFA U-20 WORLD CUP,” vol. 2, no. September, pp. 369–378, 2023.
R. R. Sani, Y. A. Pratiwi, S. Winarno, E. D. Udayanti, and F. Alzami, “Analisis Perbandingan Algoritma Naive Bayes Classifier dan Support Vector Machine untuk Klasifikasi Berita Hoax pada Berita Online Indonesia,” J. Masy. Inform., vol. 13, no. 2, pp. 85–98, 2022, doi: 10.14710/jmasif.13.2.47983.
F. Sains, “The 2 st Seminar Nasional dan Prosiding Scitech 2023 SOSIAL MENGGUNAKAN METODE NAIVE BAYES ) SENTIMENT ANALYSIS OF PUBLIC VIEWS ON QATAR GOVERNMENT POLICIES IN THE 2022 WORLD CUP ON SOCIAL MEDIA USING,” pp. 559–565, 2023.
B. W. Sari and F. F. Haranto, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, 2019, doi: 10.33480/pilar.v15i2.699.
D. Rahma Putri, B. Arif Dermawan, I. Purnamasari, U. H. Singaperbangsa Karawang Jl Ronggo Waluyo, and T. Timur, “Implementasi Modified Enhanced Confix Stripping Stemmer pada Klasifikasi Fake News Covid-19,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 589–600, 2021.
C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021,doi: 10.30865/mib.v5i2.2845.
P. R. Saputra Andri , Subing Mulia, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Mengenai Piala Dunia Fifa 2022,” Teknomatika, vol. 13, no. 01, pp. 22–31, 2023, [Online]. Available: http://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/616
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0