Implementasi Optimasi NLP dan KNN untuk User Review Aplikasi SAMPEAN Cirebon
Keywords:
NLP, KNN, User Reviews, Text Classification, OptimizationAbstract
The use of information technology in the personnel administration process plays an active role in improving public services for civil servants (ASN) in the Cirebon City Government by providing accurate data for decision-making. One of the smart city applications that assists ASN in Cirebon City in supporting personnel administration activities is the SAMPEAN Cirebon City application. However, to ensure that this application is truly effective and meets user needs, it is important to analyze user reviews provided through application reviews. One effective method for analyzing user reviews is by using Natural Language Processing (NLP) and machine learning techniques. The NLP technique and classification model used is the KNN algorithm. The purpose of this research is to provide valuable input for application developers in improving the quality and performance of the SAMPEAN application. The research results show that by testing accuracy using the confusion matrix with K values of 3, 5, 7, and 9, it was found that K=9 provides the best performance with a balance between precision, recall, F1-Score, and accuracy. The model achieved a precision of 64%, recall of 90%, F1-Score of 75%, and accuracy of 62%. It can be concluded that with the optimization of the K parameter in KNN, the higher the K value, the higher the accuracy. This emphasizes the importance of selecting the right parameters to enhance the effectiveness of machine learning models in various Natural Language Processing (NLP) applications.
References
K. T. Hermawan, I. G. Pusparani, and D. Solihudin, “Transformasi Digital Layanan Kepegawaian Pemerintah Daerah Kota Cirebon: Studi Kasus Kebijakan Sistem Administrasi Manajemen Pemerintahan (SAMPEAN),” J. Stud. Kebijak. Publik, vol. 2, no. 1, pp. 13–26, 2023, doi: 10.21787/jskp.2.2023.13-26.
E. Sera, H. Hazriani, M. Mirfan, and Y. Yuyun, “Analisis Sentimen Ulasan Produk di E-Commerce Bukalapak Menggunakan Natural Language Processing,” Pros. SISFOTEK, pp. 237–243, 2023, [Online]. Available: http://www.seminar.iaii.or.id/index.php/SISFOTEK/article/view/406%0Ahttp://www.seminar.iaii.or.id/index.php/SISFOTEK/article/download/406/338
N. Azriansyah, E. Indra, and N. Azriansyah, “Penerapan Natural Language Processing Untuk Analisis Sentimen Terhadap Aplikasi Streaming,” J. Ilm. BETRIK (Besemah Teknol. Inf. dan Komputer), vol. 14, no. 2, pp. 273–282, 2023, [Online]. Available: https://ejournal.pppmitpa.or.id/index.php/betrik/article/view/96
Muhammad Daffa Al Fahreza, Ardytha Luthfiarta, Muhammad Rafid, and Michael Indrawan, “Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 16–25, 2024, doi: 10.52158/jacost.v5i1.715.
A. N. S. Rahayu, T. I. Hermanto, and I. M. Nugroho, “Sentiment Analysis Using K-Nearest Neighbor Based on Particle Swarm Optimization According To Sunscreen’S Reviews,” J. Tek. Inform., vol. 3, no. 6, pp. 1639–1646, 2022, doi: 10.20884/1.jutif.2022.3.6.425.
S. P. Dewi, N. Nurwati, and E. Rahayu, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 639–648, 2022, doi: 10.47065/bits.v3i4.1408.
Al-Khowarizmi, R. Syah, M. K. M. Nasution, and M. Elveny, “Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, pp. 2696–2703, 2021, doi: 10.11591/ijece.v11i3.pp2696-2703.
P. Arsi, I. Prayoga, and M. H. Asyari, “Klasifikasi Sentimen Publik Terhadap Jenis Vaksin Covid-19 yang Tersertifikasi WHO Berbasis NLP dan KNN,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 260–266, 2023, doi: 10.30865/mib.v7i1.5418.
I. H. Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 302–307, 2023, doi: 10.30591/jpit.v8i3.5734.
S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.
D. Mustikasari, I. Widaningrum, R. Arifin, and W. H. E. Putri, “Comparison of Effectiveness of Stemming Algorithms in Indonesian Documents,” Proc. 2nd Borobudur Int. Symp. Sci. Technol. (BIS-STE 2020), vol. 203, pp. 154–158, 2021, doi: 10.2991/aer.k.210810.025.
M. Prasetya, M. Wulandari, and S. A. Nikmah, “Implementasi NLP (Natural Language Processing) Dasar pada Analisis Sentiment Review Spotify,” Stain. (Seminar Nas. Teknol. Sains), vol. 3, no. 1, pp. 145–153, 2024.
X. Li, J. Zhang, and F. Safara, “Improving the Accuracy of Diabetes Diagnosis Applications through a Hybrid Feature Selection Algorithm,” Neural Process. Lett., vol. 55, no. 1, pp. 153–169, 2023, doi: 10.1007/s11063-021-10491-0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0