Aplikasi Pengelompokan Penjualan Dengan Clustering Data Mining Pada Toko Retail Kota Padang

Authors

  • Eka Praja Wiyata Mandala UPI YPTK Padang
  • Musli Yanto UPI YPTK Padang
  • Dewi Eka Putri UPI YPTK Padang

Keywords:

Clustering, Data Mining, Sales, Retail Store

Abstract

Retail is one or more activities that add value to the product to the consumer either for family needs or for personal use. Retail can sell products depending on current market needs. The goods we enjoy today are not apart from retail services, retail helps producers / distributors and consumers so that every need will be fulfilled. In this problem the author tries to do retail store research in the city of Padang. Retail store in question is minimarket. This study aims to assist retail stores in grouping the sale of goods. Data mining can be a solution in overcoming the problem. By using Clustering Data Mining, retailers will be able to classify the sales of goods in their retail stores. The results of the grouping gives an idea to the retail manager to be able to determine what items need to be held for the future. Applications are born this will not only be able to do the grouping process that occurs in this retail store alone, but it can also be penetrated into all aspects of retail both retail goods and retail services. This application can help to determine the procurement of goods in the sales process that will minimize the losses that occur in every sales activity.

References

[1]Ginting, S.L.B., 2010., Konstruksi Struktur Bayesian Network dalam Data Mining untuk Basis Data Incomplete Menggunakan Algoritma CB*., Jurnal Spektrum., pp 111-127
[2]Han, J and Kamber, M., 2011., Data Mining Concepts and Techniques Third Edition, Elsevier
[3]Witten, I.H., Eibe, F, and Hall, M.A, 2011., Data mining Practical Machine Learning Tools and Techniques 3rd Edition, Elsevier
[4]Durairaj, M., and Vijitha, C., 2014., Educational data mining for prediction of student performance using clustering algorithms. International Journal of Computer Science and Information Technologies
[5]Alfina, T., Santosa, B., and Barakbah, A.R., 2012., Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam Cluster Data (Studi Kasus: Problem Kerja Praktek Teknik Industri ITS)., Jurnal Teknik ITS
[6]Larose, D.T., 2005., Discovering Knowledge in Data an Introduction to Data Mining, John Wiley & Sons
[7]Putra, R.R, and Wadisman, C., 2018., Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means. INTECOMS: Journal of Information Technology and Computer Science pp: 72-77
[8]Putri, D.E., 2015., Metode Non Hierarchy Algoritma K-Means Dalam Mengelompokkan Tingkat Kelarisan Barang (Studi Kasus: Koperasi Keluarga Besar Semen Padang)., Prosiding Senatkom
[9]Mas`udia, P.E, Arinie, F, and Mustafa, L.D., 2018., Clustering Data Remunerasi Dosen Untuk Penilaian Kinerja Menggunakan Fuzzy c-Means., Jurnal RESTI
[10]Hakim, L and Seruni, H., 2018., Indikasi Penyimpangan Laporan Keuangan Akademik Universitas XYZ Menggunakan Algoritma Greedy dan K-Means., Jurnal RESTI
[11]Mandala, E.P.W., 2015., Web Programming Project : e.p.w.m Forum., Yogyakarta., Andi

Downloads

Published

2018-09-05

How to Cite

Mandala, E. P. W., Yanto, M., & Putri, D. E. (2018). Aplikasi Pengelompokan Penjualan Dengan Clustering Data Mining Pada Toko Retail Kota Padang. Prosiding SISFOTEK, 2(1), 1 - 8. Retrieved from http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/49

Issue

Section

1. Sistem Informasi Manajemen