Peringkas Teks Otomatis Berita Online Komisi Pemilihan Umum Menggunakan Algoritma K-Means Clustering
Keywords:
Automatic Text Summarization, -Means Clustering, Online News, General Election Commission (KPU), Information Filtering, Reading Interest, News SummarizationAbstract
This research aims to develop an automatic text summarization system capable of summarizing online news about the General Election Commission (KPU) using the K-Means Clustering algorithm. In the current digital era, online news has become a primary source of information for the public, but the overwhelming amount of available information often makes it difficult for readers to filter and comprehend news efficiently. The low reading interest of the public further exacerbates this issue. Therefore, the automatic text summarization system is expected to provide a solution by helping readers quickly and effectively grasp the essence of the news. The K-Means Clustering algorithm will group sentences in the news into several clusters, which will then be used to create a representative summary. This research also identifies challenges such as the accuracy of the summary and the diversity of language in the news. The implementation of this system is expected to improve readers' time efficiency, provide better access to information, and support increased public participation in the democratic process.
References
Andre, D. (2023). Perkembangan Teknologi Informasi: Dampaknya Sampai Saat Ini. ToffeeDev. Retrieved from https://toffeedev.com/perkembangan-teknologi-informasi/
Madcoms. (2019). Karakteristik Masyarakat Era Digital dan Media Sosial. Jurnal Komunikasi Pembangunan, 17(2), 180-183..
Civita C.I.L, Vivi P. R, Gladly C. R,. 2022. Data Mining Rekomendasi Sekolah Calon Siswa SMA di Kota Tomohon Menggunakan Metode K-Means Clustering
Komisi Pemilihan Umum Republik Indonesia. (2024). Electoral Governance: Jurnal Tata Kelola Pemilu Indonesia, Vol. 5 No. 2.
Komisi Pemilihan Umum Republik Indonesia. (2024). Riset Kepemiluan Indonesia.
Santoso, B. (2023). Pengembangan sistem peringkas teks otomatis menggunakan algoritma K-Means Clustering. Jurnal Teknologi Informasi, 15(2), 123-130.
Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert systems with applications, 40(1), 200-210.
Rina N. M, Quido C. K, Ferdinan I. S., 2023. Sistem Pengendali Perangkat Elektronik Melalui Voice Assistant Dengan Metode Rapid Aplication Development (RAD)
Sutrisno, A. (2022). Rapid application development: A methodology for software development. Journal of Software Engineering, 10(1), 45-56.
Jain, A. K. (2020). A survey of K-means algorithm variants. International Journal of Computer Applications, 975(5), 6-10.
Xu, R., & Wunsch, D. (2018). K-means clustering: A comprehensive review. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 786-797.
Sharmila, P., & Suresh, S. (2021). An enhanced K-means clustering algorithm for data mining. Journal of Data Science, 19(1), 45-60.
Gupta, M., & Singh, R. (2022). Performance evaluation of K-means clustering algorithm in big data. Journal of Big Data, 9(1), 1-15.
Chen, Y., & Kumar, R. (2021). The impact of RAD on software development time and quality. Software Engineering Journal, 12(4), 78-85.
Rahman, M., & Lee, S. (2023). Evaluating rapid application development in software projects. International Journal of Information Technology, 14(3), 201-210.
Ghadban, D., Awad, A., AlHajj, M., 2022.A Survey on Automatic Text Summarization
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0