Analisis Kelayakan Peminjaman Uang untuk Pembelian Properti Dipengaruhi oleh Status Perkawinan dan Jumlah Tanggungan Menggunakan Algoritma Naïve Bayes
Keywords:
data mining, naïve Bayes, loan feasibilityAbstract
This study aims to analyse the feasibility of loan approval for property purchases influenced by marital status and the number of dependents using the Naïve Bayes algorithm. Data were collected from a bank and analyzed using Orange Data Mining software. The results show that the Naïve Bayes algorithm is effective in predicting loan feasibility with an accuracy rate of 80.4%. Other evaluation metrics such as F1 score, precision, and recall also demonstrate good performance, with values of 78.2%, 81.4%, and 80.4% respectively. Although there are some weaknesses in predicting both positive and negative classes with equal accuracy, overall, the Naïve Bayes method remains reliable for this purpose. The implementation of this algorithm using the Orange Data Mining toolkit facilitates the data analysis and visualisation process, providing a clear understanding of the factors influencing loan feasibility for borrowers.
References
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Third Edit. Morgan Kaufmann, 2012. doi: https://doi.org/10.1016/C2009-0-61819-5.
M. Farrell Putro, E. Prayitno, J. Siregar, and M. Muharrom, “PENERAPAN DATA MINING DENGAN NAÏVE BAYES UNTUK KLASIFIKASI SISWA SEKOLAH MENENGAH ATAS DALAM PENENTUAN PERGURUAN TINGGI,” Akrab Juara J. Ilmu-ilmu Sos. Vol 6 No 2 Mei, 2021, doi: 10.58487/akrabjuara.v6i2.1473.
D. Puspita Sari, S. Shofia Hilabi, and Agustia Hananto, “Penerapan Data Mining Metode K-Nearest Neighbor Untuk Memprediksi Kelulusan Siswa Sekolah Menengah Pertama,” SMARTICS J., vol. 9, no. 1 SE-Article, pp. 14–19, Mar. 2023, doi: 10.21067/smartics.v9i1.8088.
J. P. Gultom and A. Rikki, “Implementasi Data Mining menggunakan Algoritma C-45 pada Data Masyarakat Kecamatan Garoga untuk Menentukan Pola Penerima Beras Raskin,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komputer), vol. 2, no. 1 SE-, pp. 11–19, Apr. 2020, doi: 10.54367/kakifikom.v2i1.664.
E. Turban, J. E. Aronson, and T. Liang, Sistem pendukung keputusan dan sistem cerdas, 1st ed. Yogyakarta: Andi Offset, 2005.
B. Santosa, Data mining?: Teknik pemanfaatan data untuk keperluan bisnis, 1st ed. Yogyakarta: Graha Ilmu, 2007.
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” J. EECCIS (Electrics, Electron. Commun. Control. Informatics, Syst., vol. 7, no. 1 SE-Articles, p. pp.59-64, Jul. 2013, doi: 10.21776/jeeccis.v7i1.204.
H. H. A. A. S. Alim, “IMPLEMENTASI ORANGE DATA MINING UNTUK KLASIFIKASI KELULUSAN MAHASISWA DENGAN MODEL K-NEAREST NEIGHBOR, DECISION TREE SERTA NAIVE BAYES,” Netw. Eng. Res. Oper., no. Vol 6, No 2 (2021): NERO, pp. 133 – 144, 2021, [Online]. Available: https://nero.trunojoyo.ac.id/index.php/nero/article/view/237/170
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0