Bibliometrik Analysis: Optimasi Regresi Linear untuk Estimasi Big Data pada Database Scopus Tahun 2013-2024
Keywords:
Linear Regression, Big Data, Optimization,, Quantum Algorithms, Data AnalyticsAbstract
This bibliometric analysis investigates the optimization of linear regression for big data estimation, focusing on publication trends, citation metrics, geographic distribution, and research innovations from 2013 to 2024. The publication trend analysis reveals a significant increase in research on linear regression optimization, peaking in 2023, followed by a decline in 2024. Citation analysis shows that although this topic is relatively new, it has gained increasing scientific recognition, indicating its growing relevance. The geographic distribution highlights China, the United States, and the United Kingdom as the leading contributors to research on linear regression optimization for big data. Key innovations in this field include the application of quantum algorithms and advanced optimization techniques, which have significantly improved computational efficiency and the accuracy of linear regression models in handling large and complex datasets. These findings underscore that linear regression optimization will continue to evolve and make important contributions to big data analytics.
References
P. Date and T. Potok, “Adiabatic quantum linear regression,” Sci. Rep., 2020, doi: 10.1038/s41598-021-01445-6.
Q. Klopfenstein and S. Vaiter, “Linear Support Vector Regression with Linear Constraints,” 2019.
K. Kaneko, K. Miyamoto, N. Takeda, and K. Yoshino, “Linear regression by quantum amplitude estimation and its extension to convex optimization,” Phys. Rev. A, vol. 104, no. 2, pp. 1–13, 2021, doi: 10.1103/PhysRevA.104.022430.
R. Mazumder and H. Wang, Linear regression with partially mismatched data: local search with theoretical guarantees. 2022. doi: 10.1007/s10107-022-01863-y.
S. Abdul Shukor, N. Salikin, U. S. Ahmad Bustamam, I. F. Anwar, and S. N. Nordin, “Crisis management: A bibliometric analysis,” J. Muamalat Islam. Financ. Res., vol. 20, no. 1, pp. 64–78, 2023, doi: 10.33102/jmifr.500.
A. F. Obele, D. O. Aikhuele, and N. H.U, “The application of the Bayesian linear regression model to optimize the maintenance of a programmable logic controller,” Futur. Technol., vol. 3, no. 3, pp. 8–14, 2024, doi: 10.55670/fpll.futech.3.3.2.
P. Bansal et al., “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, vol. i, no. tourism, p. 15, 2016, [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
X. Wang, Insight into coffee consumption behavior: a Bibliometrix analysis, no. Icfied. Atlantis Press International BV, 2024. doi: 10.2991/978-94-6463-408-2_13.
A. R. de Sousa Neto et al., “Bibliometric Analysis of Global Scientific Production on COVID-19 and Vaccines,” Int. J. Environ. Res. Public Health, vol. 20, no. 6, 2023, doi: 10.3390/ijerph20064796.
H. Hariyanto and R. Riki, “Bibliometrix Analysis: Management Inventory dan Supply Management,” eCo-Fin, vol. 5, no. 3, pp. 223–236, 2023, doi: 10.32877/ef.v5i3.870.
M. Castillo-Vergara, V. Muñoz-Cisterna, C. Geldes, A. Álvarez-Marín, and M. Soto-Marquez, “Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business,” Axioms, vol. 12, no. 7, pp. 1–19, 2023, doi: 10.3390/axioms12070631.
X. Liu, P. Jain, W. Kong, and S. Oh, “Near Optimal Private and Robust Linear Regression,” vol. 1, pp. 1–43, 2023.
A. S. Putri, S. Soehardjoepri, and A. Suharsono, “Optimasi Parameter Support Vector Regression pada Prediksi Nilai Tukar Dolar Amerika terhadap Rupiah dengan Menggunakan Genetic Algorithm dan Particle Swarm Optimization,” J. Sains dan Seni ITS, vol. 12, no. 2, 2023, doi: 10.12962/j23373520.v12i2.111596.
L. Peng and M. C. Tsakiris, “Linear regression without correspondences via concave minimization,” IEEE Signal Process. Lett., vol. 27, no. 2, pp. 1580–1584, 2020, doi: 10.1109/LSP.2020.3019693.
Deepanshi, “Linear Regression | Introduction to Linear Regression for Data Science,” Https://Www.Analyticsvidhya.Com/, vol. 8, no. 8, pp. 625–630, 2021, [Online]. Available: https://www.analyticsvidhya.com/blog/2021/05/all-you-need-to-know-about-your-first-machine-learning-model-linear-regression/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0